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Inorganic contaminants, including those commonly known as

‘heavy metals’ (cadmium, arsenic, lead and mercury) and

others like aluminum, copper, zinc, and nickel, may be present

in baby foods such as infant formulas, cereals, snacks,

prepared meals, and jarred fruits and vegetables. Children,

babies and toddlers are more vulnerable to these toxic

elements due to their immature development and high ‘food

intake/body weight’ ratio. The most important adverse effects

of inorganic contaminants for infants include: anemia,

nephrotoxicity, developmental, and reproductive toxicity, lower

intelligence quotient (IQ), and neurotoxic effects. As this topic

represents a relevant food safety issue, this article aims to

review recent data about the occurrence of inorganic

contaminants in baby foods, regulatory aspects, exposure

assessment, as well as analytical methods for their

determination. The available information reinforces the

importance of standardizing routine quality control and

reducing inorganic contaminants levels in infant formula and

baby foods.
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Introduction
According to the World Health Organization, adequate

nutrition during infancy and early childhood is essential

to ensure the growth, health, and development of chil-

dren to their full potential [1]. Global recommendations

for optimal infant feeding include exclusive breastfeed-

ing for six months and nutritionally adequate and safe
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complementary feeding starting from the age of six

months with continued breastfeeding up to two years

of age or beyond [2]. Milk formulas are usually recom-

mended as human milk substitutes when breastfeeding

problems occur [3��].

It is well known that raw materials used to prepare foods

intended for infants and young children, such as milk,

vegetables, fruits, and cereals, may contain a number of

chemical elements with toxic properties [4�]. Moreover,

inorganic contaminants may also arise from further pro-

cessing of these materials, which may compromise the

safety of baby foods [5]. These include elements com-

monly known as ‘heavy metals’ (cadmium, arsenic, lead,

and mercury) and others like aluminum, copper, zinc and

nickel [6].

The potential toxic effects of these elements in infants

and young children are well documented in the literature

and include decrease of intelligence quotient IQ and

deficiencies in the development of nervous, reproductive,

digestive, respiratory, and immune systems. Moreover,

children are more susceptible to the exposure to con-

taminants than adults due to their high intestinal absorp-

tion capability and low effective excretion [3��,7]. Con-

sequently, this topic is of significant interest to the public

health and should be carefully addressed. Therefore, the

aim of this study is to review recent data about

the occurrence of inorganic contaminants in baby foods,

regulatory aspects, exposure assessment as well as analyt-

ical methods for their determination.

Toxicity of inorganic contaminants
The toxicity of metals can be discussed in terms of

chronic or acute effects. Most metals have a high affinity

with the sulfhydryl group of proteins and can inhibit more

than two hundred enzymes in the biological system [4�].
Long-term exposure to toxic metals induces adverse

effects in many organs of the human body, such as

hepatonephrotoxicity and neurotoxicity [6].

Chemically, metals in their ionic form can be very reac-

tive and interact with biological systems in a wide variety

of ways, considering that a cell has numerous ligands for

binding to chemical elements. Metals can show more

specific forms of interactions through mimicry, for exam-

ple. By acting as essential metal mimics, they attach to

physiological sites that are normally reserved for an
www.sciencedirect.com
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essential element. Another important chemical reaction

in the toxicology of metals is the oxidative damage

mediated by these elements. Many metals may act

directly as catalytic centers for oxidoreductive reactions

with molecular oxygen or other endogenous oxidants,

producing oxidative modifications of biomolecules such

as proteins and DNA. This may be the major stage in the

carcinogenicity process of certain metals. In addition to

oxygen-based radicals, carbon and sulfur radicals can

occur [8]. The toxicity mechanism in children depends

on the exposure frequency to a specific metal. However,

toxic effects such as pediatric pneumonia, neurological

disorders, and altered neuro-behavioral development are

the most reported in literature [9�].

According to the Joint FAO/WHO Expert Committee on

Food Additives (JECFA), there is no safe exposure level

to lead [10]. However, although the removal of this

element from house paint and gasoline has reduced the

occurrence of lead in the environment, contamination

remains [11,12]. Lead is a classical chronic or cumulative

poison that can result in a wide range of adverse effects in

humans depending upon the level and duration of expo-

sure [13��]. Health effects are generally not observed after

a single exposure. Lead has been shown to be associated

with impaired neurobehavioral functioning in children

[13��]. Inorganic lead compounds are classified by the

International Agency for Research on Cancer (IARC) as

probably carcinogenic to humans [13��].

Cadmium is classified as a carcinogenic metal and its

presence in the environment is mostly considered as a by-

product. Cadmium is not found as a pure metal in nature

and high concentrations have been observed in associa-

tion with lead and zinc ores [14,15]. In 2010, JECFA

replaced the Provisional Tolerable Weekly Intake

(PTWI) of 7 mg kg�1 body weight (bw) and recom-

mended a Provisional Tolerable Monthly Intake (PTMI)

of 25 mg kg�1 bw [10]. IARC classified cadmium and

cadmium compounds in group 1 (carcinogenic to humans)

[13��].

Arsenic is ranked by the Agency for Toxic Substances and

Disease Registry (ATSDR) as number one on the Priority

List of Hazardous Substances, and it is classified by IARC

as a human carcinogen (group 1) [16]. For the general

population, drinking water is the major source of exposure

to arsenic followed by fish consumption, in which high

levels occur as non-toxic arsenobetaine, as well as cereals,

in which arsenic occurs as toxic inorganic forms [10]. In

2010, JECFA withdrew the PTWI of 15 mg kg�1 bw of

inorganic arsenic recommended in 1988 once it was no

longer appropriate [10,17].

Mercury is a severe environmental problem with adverse

effects on living organisms and ultimately on human

beings [18]. The organic fraction, represented mainly
www.sciencedirect.com 
as methylmercury (MeHg), is a potent neurotoxin which

has shown x of effects on fetal growth and neurocognitive

development in early childhood [19,18]. In 2010, JECFA

establish the PTWI of 4 mg kg� bw for inorganic mercury,

and in 2006 confirmed the PTWI value of 1.6 mg kg�1 for

methylmercury [13��].

Exposure to aluminum has been associated with anemia,

impairment of bone formation and neurotoxic effects

such as Alzheimer’s disease. Recent studies have also

shown that human exposure to aluminum is identified as a

possible contributor to multiple sclerosis. Individuals

with relapsing remitting multiple sclerosis (RRMS) and

secondary progressive multiple sclerosis (SPMS) were

shown to excrete large amounts of aluminum in their

urine, an observation recently built upon and confirmed

in individuals with SPMS [20].

Small quantities of copper and zinc are essential for

hematopoiesis and other physiologic processes; however,

large amounts of copper intake causes hepatic necrosis

and sometimes death [21]. Nickel has been detected in

water, air, soil, and dust; however, through inhalation, an

iota of ingestion becomes inevitable in total daily expo-

sure. Associations between nickel and lung cancer con-

stitute the main cause of concern [22].

Occurrence of inorganic contaminants in
infant foods, regulatory aspects and health
risks
Natural phenomena, such as volcanism, and anthropo-

genic activities play an important role in transporting and

spreading chemical elements in the environment, which

results in their accumulation in the food chain [23].

Metals are not subjected to the biodegradation process

and, once released into the environment; they are

adsorbed by sediments and biomagnified in the food

chain [24].

In general, the main sources of inorganic contaminants in

infant food are related to water and soil contamination,

ingredients, and addition of inorganic salts during proces-

sing [25]. The concentration of metals in natural waters

varies significantly depending on numerous physico-

chemical, mineralogical, and geochemical factors [5].

Table 1 shows the concentrations of some inorganic

contaminants in baby foods recently reported in litera-

ture. Data were available in several countries, such as

France [26], Tanzania [27�], United States [28,29],

Switzerland [30], Brazil [4�], and Australia [31]. Levels

of arsenic varied from 0.014 to 0.228 mg kg�1 and were

higher in products containing rice (rice grains, rice cereals,

rice crackers/biscuits). Concentrations of cadmium were

in the range 0.002–0.022 mg kg� with the highest levels

also observed in rice. The lowest levels of lead

were found in baby foods from the United States
Current Opinion in Food Science 2019, 30:60–66
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Table 1

Occurrence levels of inorganic contaminants in baby foods (mgkg�1).

Food As Cd Pb Al Cu Hg MeHg Zn Ni Country/

Reference

Milk-based beverage - - - - - 0.00050 - - - France [26]a

Cereals-based food - - - - - 0.00058 - - -

Milk-based dessert - - - - - 0.00058 - - -

Fruit juice - - - - - 0.00050 - - -

Growth milk - - - - - 0.00050 - - -

Soup puree - - - - - 0.00050 - - -

Fruit puree - - - - - 0.00050 - - -

Vegetable-based ready-to-eat meal - - - - - 0.00050 - - -

Meat/fish-based ready-to-eat meal - - - - - 0.00080 - - -

Infant formula - - - - - 0.00050 - - -

Follow-on formula - - - - - 0.00052 - - -

Skimmed milk powder - 0.003 0.020 2.2 0.439 - - 45.7 0.080 Tanzania [27�]b

Full cream milk - 0.002 <0.010 1.85 0.054 - - 28.0 0.030

Infant formula - 0.002 <0.010 1.0 0.410 - - 39.6 0.050

Dry baby milk - - 0.0255-0.0744 - 0.9-6.5 - - - 0.0326-0.0814 Turkey [38]c

Infant food - - 0.0482 - 1.0-4.9 - - - 0.0711-0.1151

Infant biscuit - - 0.0155-0.0644 - 0.8-5.8 - - - 0.0501

Various (organic) - 0.0056 0.0097 - - - - - - USA [28]d

Various (non-organic) - 0.0056 0.0093 - - - - - -

Rice grains (brown) 0.205 - - - - - - - - Switzerland [30]e

Rice grains (white) 0.143 - - - - - - - -

Baby food dry form 0.083 - - - - - - - -

Baby food ready-to-eat 0.014 - - - - - - - -

Milk rice 0.015 - - - - - - - -

Rice cereals 0.228 - - - - - - - -

Rice crackers 0.169 - - - - - - - -

Rice drinks 0.019 - - - - - - - -

Baby biscuit - - - 1.2 - - - - - Turkey [39]e

Baby fruit puree - - - 1.3 - - - - -

Rice - - 0.56-0.97 1.9-13.8 1.81-2.7 - - 13.2-17.0 - Brazil [4�]c

Rice and oat - - 0.49-0.74 7.13-16.0 1.88-3.83 - - 14.4-83.0 -

Multicereals - - 0.95-0.99 2.77-17.1 1.48-2.48 - - 64.2-141.0 -

Corn flour - - 1.06-2.63 1.3-5.75 0.59-1.46 - - 89.0-107.0 -

Breakfast cereal - <0.01 <0.01-0.03 - - - - - - Australia [31]b,c

Rice - <0.01-0.022 <0.01-0.014 - - - - - -

Rice baby cereal 0.190 - - - - 0.002 0.00062 - - USA [29]e

Rice teething biscuit 0.097 - - - - 0.007 0.00094 - -

Oat or wheat baby cereal 0.021 - - - - 0.00023 0.00001 - -

Pre-cooked milled baby-food rice and rice cakes - - - - - 0.00185 0.00171 - - United Kingdom [19]e

N, number of samples; ND, Not detected.
a Upper bound average values.
b Median values.
c Range for individual samples (minimum–maximum).
d Infant formula, cereals, kids’ meals, toddler formula, juices/drinks, jars/first meals, pouches, snacks, and electrolyte solutions. Concentrations refer to 75th percentile.
e Mean values.
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Table 2

Maximum limits for inorganic contaminants (mg kg�1).

Contaminant Food Brazil

[32]

China

[33]

Codex

Alimentarius [13��]
European

Union [34,35]

USA

[36]

New Zealand

[37]

Inorganic As Cereal-based baby food 0.15 0.2 - - 0.1

Infant formulas and follow on-formulas 0.02 - - - - -

Other foods specially formulated for

infants and young children

0.02 - - - 0.01 -

Lead Cereal-based baby food 0.05 0.2 - 0.05 - -

Infant formulas and follow on-formulas 0.01 0.15 0.01 0.01 – 0.05a - 0.02

Other foods specially formulated for

infants and young children

0.01 - - - 0.005 -

Cadmium Cereal-based baby food 0.05 - - 0.04 - -

Infant formulas and follow on-formulas 0.01 – - 0.005 – 0.02b - -

Other foods specially formulated for

infants and young children

0.01 - - - -

a Infant formulas and follow on-formulas considering the liquid (0.01 mg kg�1) and powder (0.05 mg kg�1) forms.
b Infant formulas and follow on-formulas considering the liquid formulae manufactured from cows’ milk proteins or protein hydrolysates (0.005 mg kg�1)

and powdered formulae manufactured from soya protein isolates, alone or in a mixture with cows’ milk proteins (0.02 mg kg�1).
(0.0093–0.0097 mg kg�1), while the highest amounts were

reported in Brazil (0.49–2.63 mg kg�1). Concentrations of

aluminum varied from 1.0 to 17.1 mg kg�1 and the highest

levels were also observed in Brazil (rice and oat, multi-

cereals). Copper and nickel were found in the ranges

0.05–6.5 mg kg�1 and 0.03–0.115 mg kg�1, respectively,

while zinc showed higher amounts (13.2–141.0 mg kg�1).

Very low levels of mercury and methylmercury were

reported (0.01–7 mg kg�1).

Table 2 presents maximum limits for contaminants such

as arsenic, lead, and cadmium in baby foods, infant

formulas and other products, according to regulatory

agencies from Brazil (ANVISA) [32], China [33], Codex

Alimentarius [13��] European Commission [34,35], USA

[36], and New Zealand [37]. In a study developed with

Brazilian infant cereals [4�], a range of 0.95–0.99 mg kg�1

of lead was obtained, which is higher than the maximum

limit of 0.05 mg kg�1 established by the Brazilian, Chi-

nese, and European Commission regulatory agencies.

Samples of rice baby cereal [29], rice grains (brown), rice

cereal and rice crackers [30] presented mean arsenic

levels of 0.19 mg kg�1, 0.205 mg kg�1, 0.228 mg kg�1,

and 0.169 mg kg�1, respectively, which is above the

maximum limit of 0.15 mg kg�1 allowed in Brazil and

0.1 mg kg�1 in USA. Regarding other foods specially formu-

lated for infants and young children, one sample of infant

food [38] showed lead concentration of 0.0482 mg kg�1 that

surpasses the maximum limit of 0.01 mg kg�1 according to

ANVISA [32], but is acceptable for USA maximum limit of

0.005 mg kg�1. No sample of infant formula among those

presented in Table 1 showed levels above the maximum

limits for lead, arsenic, and cadmium [39,31].

Exposure assessment to inorganic As for toddlers (1–3

years) was reported considering the 95th percentile of food

consumption [30]. The highest intake (0.118 mg kg�1 bw

day�1) was estimated to be via rice grains consumption,
www.sciencedirect.com 
when maximum concentration and exposure via drinking

water are taken into account. The estimated dietary intake

of methylmercury was performed in the United States

considering four age groups – four, six, nine, and twelve

months [29]. In the referred study food matrix such as rice

baby cereals, rice-containing teething biscuits, and wheat/

oat cereals were analyzed, for which the average exposures

(mg kg�1 day�1) were 0.0011, 0.00082, and 0.000019,

respectively. All values fell below the reference dose of

0.1 mg kg�1 day�1. A further American study regarding the

contamination of infant formula with lead and cadmium

demonstrated that none analyzed sample would exceed the

Food and Drug Administration (FDA) provisional limit

of 6 mg day�1 for lead while 22% would exceed the daily

intake limit set by California’s Proposition 65

(0.5 mg day�1). For cadmium, 14% of formulas would

exceed the limit of 5.3 mg day�1 (WHO tolerable daily limit

for a 6.4 kg baby), while 23% would exceed the Proposition

65 daily limit of 4.1 mg day�1 [28].

Analytical methods for determination of total
level of inorganic contaminants
The monitoring of inorganic contaminants at trace levels

for food, biological and environmental purposes are

extremely desirable and essential. Various analytical tech-

niques are used and these methods can be classified as

spectrometric, chromatographic and electrochemical

methods. An overview of the main analytical methods

used in recent studies for the determination of inorganic

contaminants in baby foods is shown in Table 3.

The evaluation of the elemental composition of organic or

inorganic matrices requires sample preparation

approaches that include partial or total dissolution of

the sample before instrumental analysis. These involve

digestion of the matrix, extraction, and preparation of the

analytes. Sample digestion methods such as dry or wet

decomposition in open or closed systems, using thermal,
Current Opinion in Food Science 2019, 30:60–66
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Table 3

Analytical methods for the determination of inorganic contaminants in baby foods.

Matrix Method Contaminant Reference

Composite food

samples

Microwave digestion and inductively-

coupled plasma-mass spectrometry

(ICP-MS)

Aluminium (Al), antimony (Sb), arsenic

(As), barium (Ba), cobalt (Co), chromium

(Cr), gallium (Ga), germanium (Ge), lead

(Pb), mercury (Hg), nickel (Ni), silver (Ag),

strontium (Sr), tellurium (Te), tin (Sn),

vanadium (V).

[3��,45]

Baby foods, prepared with meat, fish,

vegetables, cereals, legumes, and

fruits

Hydride-generation atomic-

fluorescence spectrometry

Antimony (Sb), arsenic (As), bismuth

(Bi), and tellurium (Te)

[16]

Dry baby milk, dry baby milk with fruit,

infant food with fruit and infant biscuit

Inductively coupled plasma optical

emission spectrometry (ICP OES)

Cu(II), Ni(II) and Pb(II) [40]

Infant formulas, follow-on formulas and

baby porridges

Atomic absorption spectrometry (AAS)

equipped with a graphite furnace (GF)

for electrothermal atomization

Arsenic (As), lead (Pb), cupper (Cu), and

tin (Sn)

[42,43,44]

Baby biscuit, baby food and baby fruit

puree

Fluorimetry Aluminium (Al) [20]

Water and juice UV–Visible spectrophotometry Inorganic arsenic (As) [46]
ultrasonic, or radiant (infrared, ultraviolet, and micro-

waves) energy tools are essential for the digestion of

inorganic substances, before their analysis [40,41].

In general, the most applied analytical techniques for

inorganic contaminants are conventional spectrometric

methods namely flame atomic absorption spectroscopy

(FAAS) [42–44], inductively coupled plasma optical emis-

sion spectrometry (ICP OES) [38], inductively coupled

plasma mass spectrometry (ICP-MS) [3��,28,30,45], and

atomic fluorescence spectroscopy [16]. Fluorimetry and

UV–vis spectrophotometry were also reported in litera-

ture for Al and As quantification in baby biscuits, fruit

purees, water, and juice [39,46].

The use of tandem MS with the ICP technique not only

provides a decrease in solvent volumes, higher through-

put, and improved resolution, but also allows speciation

methods for inorganic contaminants; however, the main

disadvantage related to this technique is the high cost

[47]. Flame atomic absorption spectroscopy, fluorimetry,

and UV–vis spectrophotometry are more affordable price

techniques; however, they present low analytical sensi-

tivity when compared to mentioned techniques, such as

ICP OES and ICP-MS [48].

Nanotechnology and functional materials with submicron

size and distinct physiochemical characteristics have

recently opened up new horizons for food safety inspection

and generated a large number of methods of detection with

improved analytical performance and further, may contrib-

ute with better performance for the analysis of the complex

sample matrices [49,50].

Conclusions
Occurrence of inorganic contaminants in foods intended

for infants and young children, as reported in several
Current Opinion in Food Science 2019, 30:60–66 
recent studies, indicates a health concern and the need

to establish or strength management measures to reduce

this contamination. A greater data collection, the moni-

toring of water quality, soil, raw materials and final

products, and exposure assessments conducted around

the world could provide information to support risk

management strategies. Advances in analytical methods

were noted, but mostly validated procedures were only

available for the determination of total levels of these

elements. In this sense, future challenges may include

contaminants speciation and their possible interactions

with other compounds in the matrix, which could directly

affect the bioavailability. Improved communication

among stakeholders is a key need and consumer demands

for a safer product can provide food manufacturers with

the oft-requisite economic incentive necessary to take

steps toward reductions of inorganic contaminants con-

tent in baby foods and infant formulas.
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