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A B S T R A C T

Bee pollen consumption has increased in the last years, mainly due to its nutritional value and therapeutic
applications. The quantification of mineral constituents is of great importance in order to evaluate both, the
toxicity and the beneficial effect of essential elements. The purpose of this work was to quantify the essential
elements, Ca, Mg, Zn, P and K, by diffuse reflectance spectra in the near infrared region (NIR) combined with
partial least squares regression (PLS), which is a clean and fast method. Reference method used was ICP OES.

The determination coefficients for calibration models (R2) were above 0.87 and the mean percent calibration
error varied from 5 to 10%. For external validation R2 values were higher than 0.76. The results indicated that
NIR spectroscopy can be useful for an approximate quantification of these minerals in bee pollen samples and
can be used as a faster alternative to the standard methodologies.

1. Introduction

Bee pollen is collected from flowers by honeybees that transport it
to the hive and pack in the honeycomb mixing with secretion from
salivary glands and honey. The mixture created is the bee bread, the
main protein source for bee colony and for royal jelly. Bee pollen, as
honey and propolis, is an apitherapeutic that contains about 250 sub-
stances including sugars (fructose and glucose), proteins, minerals, vi-
tamins, lipids and flavonoids (Komosinska-Vassev, Olczyk,
Kafmierczak, Mencner, & Olczyk, 2015; Costa, Morgano, Ferreira, &
Milani, 2017). However, the chemical composition depends on the local
of the collect, climate and season of the year. According to Komosinska-
Vassev et al. (2015), bioelements are present in about 1.6% including
macronutrients (calcium, magnesium, phosphorus, potassium and so-
dium) and micronutrients (iron, copper, zinc, manganese, silicon, and
selenium).

The presence of these essential elements in human diet is necessary
in order to avoid deficiencies, but toxic effects can occur if consumed
above the required level. Therefore, the analytical control of daily in-
take of minerals is of great importance. These minerals have been
quantified in bee pollen samples from diverse locations in the world
(Campos, Firgerio, Lopes, & Bogdanov, 2010; Morgano, Martins,
Rabonato, & Milani, 2012; Cosmulescu, Trandafir, & Nour, 2015;
Szczesna, 2007; Krejcova, Ludvikova, Cernohorsky, & Pouzar, 2012;

Somerville & Nicol, 2002). The inductively coupled plasma optical
emission spectrometry (ICP OES) and inductively coupled plasma mass
spectrometry (ICP-MS) are the most accurate techniques for determi-
nation of mineral elements in foods (Krejcova et al., 2012; Somerville &
Nicol, 2002), but involves previous preparation of samples such as
dissolution and digestion that can be time consuming. Infrared spec-
trometry and X-ray fluorescence methods are green alternatives for
direct determination of the mineral composition of food samples. In-
frared spectroscopy combined with chemometrics has been extensively
applied to determine and quantify organic nutrients in food; however, it
is believed that vibrational spectroscopy has a lack of sensitivity for
mineral components (Schmitt, Garrigues, & Guardia, 2014), in the sense
that metal detectability by vibrational spectroscopy depends probably,
of the metal association with organic matter. Nevertheless, there are
several publications in this field (Cozzolino et al., 2008; Gonzalez-
Martin, Hernandez-Hierro, & Gonzalez-Cabrera, 2007; Lebot,
Champagne, Malapa, & Shiley, 2009; Masoum, Alishahi, Shekarchi, &
Farahmand, 2011; Moros et al., 2008; Plans et al., 2012; Wu, He, Shi, &
Feng, 2009).

Recently, near infrared spectroscopy (NIR) and partial least square
regression (PLS) were applied to a set of 154 bee pollen samples col-
lected in twelve different locations from Brazil, in order to quantify ash,
lipid, protein, glucose, fructose and free acidity (Costa et al., 2017).
Brazil has a great potential for apiculture due to its diversified flora and

https://doi.org/10.1016/j.foodchem.2018.02.017
Received 14 July 2017; Received in revised form 25 January 2018; Accepted 3 February 2018

⁎ Corresponding author at: Institute of Chemistry, University of Campinas – Unicamp, P.O. Box 6154, 13084-971 Campinas, SP, Brazil.
E-mail addresses: cristina.costa@iqm.unicamp.br (M.C.A. Costa), morgano@ital.sp.gov.br (M.A. Morgano), marcia@iqm.unicamp.br (M.M.C. Ferreira),

raquel.milani@ital.sp.gov.br (R.F. Milani).

Food Chemistry 273 (2019) 85–90

Available online 09 February 2018
0308-8146/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03088146
https://www.elsevier.com/locate/foodchem
https://doi.org/10.1016/j.foodchem.2018.02.017
https://doi.org/10.1016/j.foodchem.2018.02.017
mailto:cristina.costa@iqm.unicamp.br
mailto:morgano@ital.sp.gov.br
mailto:marcia@iqm.unicamp.br
mailto:raquel.milani@ital.sp.gov.br
https://doi.org/10.1016/j.foodchem.2018.02.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.foodchem.2018.02.017&domain=pdf


favorable climate, but the current production is not sufficient to na-
tional demand, since the pollen consumption has actually increased in
Brazil (SEBRAE, 2015). Knowing the composition and quality of bee
pollen from different regions can help finding the best places to install
new apiaries. The minerals calcium (Ca), magnesium (Mg), zinc (Zn),
phosphorus (P) and potassium (K) were quantified through ICP OES by
Morgano et al. (2012) for the same set of bee pollen samples. According
to Morgano et al. (2012), the most abundant elements in the Brazilian
pollen composition are Ca, Mg, P and K, whereas zinc, present in minor
quantity, is considered an important antioxidant since it is a component
of the superoxide dismutase (SOD) antioxidant enzyme (Rauma &
Mykkanen, 2000).

The authors found the following percentage contribution of the
mineral elements to Brazilian recommended daily intake (RDI) for
adults, considering a 25 g portion of pollen: Ca (5.5%), Mg (11.3%), Zn
(16.7%), P (17.2%) and K (2.7%). The recommended daily intake (RDI)
established by Brazilian regulation per portion are (Brazilian Ministry of
Health, 2005): Ca (1000mg); Mg (260mg); Zn (7mg) and P (700mg);
the RDI for potassium is 4700mg (IOM, Institute of Medicine, 2011).
The levels of these minerals (Morgano et al., 2012) in the Brazilian bee
pollen samples are above or similar to those found in the literature,
except for the concentration range of zinc which is below to that found
by González-Martín et al. (2015). According to the National Agency of
Health Surveillance – ANVISA (1998), any food “with minimum of 15%
of the daily recommended intake (DRI) per 100 g of solid food” is
considered as a source of minerals while those “with minimum of 30%
of the reference DRI per 100 g of solid food” is considered rich in mi-
nerals. Thus, the Brazilian pollen is considered as a source of zinc
(16.7% of RDI) and phosphorus (17.2% of RDI) for an intake of about
25 g. The results obtained by Morgano et al. (2012) show that Brazil can
be a potential pollen producer, especially in the Northeast region where
the amounts of minerals are higher and the production remains almost
constant throughout the year.

The main objectives of the present study were verify the potential of
near infrared spectroscopy (NIR) combined with partial least square
regression (PLS) for the quantification of calcium, magnesium, zinc,
phosphorus and potassium in bee pollen samples and to propose a fast,
simple and environment-friendly method for the determination and
quantification of these minerals in bee pollen.

2. Methodology

2.1. Samples

One hundred and fifty-four dehydrated bee pollen samples
(packages with 200–300 g) were acquired from apiculture producers
from twelve different regions of Brazil: Bahia (BA), Santa Catarina (SC),
São Paulo (SP), Sergipe (SE), Paraná (PR), Minas Gerais (MG), Espírito
Santo (ES), Rio Grande do Sul (RS), Distrito Federal (DF), Mato Grosso
(MT), Piauí (PI) and Ceará (CE) (Table 1). Before analyses, the samples
were ground in a refrigerated mill (M20, IKA Labortecnik, Staufen,
Germany) and sieved through a 30-mesh sieve (600 µm).

2.1.1. Reagents and solutions
All analyses were carried out using analytical purity grade reagents

and reverse osmosis-purified water (Gehaka, São Paulo, Brazil, 18.2 MΩ
cm). Nitric acid (Merck, Darmstadt, Germany), hydrogen peroxide 30%
(Merck, Darmstadt, Germany) and hydrochloridric acid (Merck,
Darmstadt, Germany) were applied in sample treatment.

Analytical curves were prepared by successive dilutions of standard
solutions: 10,000mg L−1 for Ca, K, Mg (Titrisol – Merck, Darmstadt,
Germany) and P (Qhemis High Purity, Jundiai, Brazil) and 1000mg L−1

for Zn (Merck, Darmstadt, Germany) in 5% HCl (v/v). The concentra-
tion ranges of standard solutions were: 0.05–2.5 mg L−1 for Zn;
5.0–75.0 mg L−1 for Ca, P and Mg and 25.0–150.0 mg L−1 for K.

2.1.2. Determination of minerals in bee pollen samples
Minerals (Ca, K, Mg, P and Zn) were determined by an axial view

ICP OES (Vista MPX, Varian, Mulgrave, Victoria, Australia) after di-
gestion in a closed microwave oven decomposition system (Start D,
Milestone, Sorisole, Italy), as described in a previous study (Morgano
et al., 2012). Briefly, 0.65–0.70 g of milled bee pollen samples was
weighed into a Teflon digestion flask, added by 10mL of nitric acid and
3mL of 30% hydrogen peroxide. Digestion was performed in two steps,
using 1000W power at maximum temperature of 200 °C. After that,
samples were cooled at room temperature and the content was trans-
ferred to a 25mL volumetric flask with 5% HCl solution (v/v).

The elements were quantified by ICP OES equipped with radio-
frequency source of 40MHz, CCD simultaneous solid state detector,
peristaltic pump, seaspray nebulizer connected to cyclonic spray
chamber and high-purity argon (99.996%, Air Liquid, São Paulo,
Brazil). The system was controlled by ICP Expert software using the
method previously reported by Morgano et al. (2012): power (1000W);
auxiliary, nebulizer and cooling argon flow rate (1.5, 0.9 and
15 Lmin−1, respectively); background correction (2 points); integration
and reading time (10 s); replicate number (3) and wavelengths Ca,
317.933 nm; K, 766.491 nm; Mg, 280.270 nm; P, 213.618 nm and Zn,
206.200 nm.

2.1.3. Quality control
All analyses were performed in triplicate and analytical blanks were

prepared following the same procedure used for the bee pollen samples.
Analytical curves linearity was verified using the coefficient of corre-
lation and the limits of detection and quantification were calculated as
proposed by Mermet, & Poussel (1995): LOD= (3×RSD×BEC)/100
and LOQ=5 LOD, being RSD, the relative standard deviation and BEC,
the background equivalent concentration, both determined experi-
mentally (n=8). Method accuracy and precision were evaluated by
recovery experiments and the coefficient of variation (n=8), respec-
tively.

2.2. Near infrared spectroscopy

The spectra in the near infrared region were recorded from 10,000
to 4000 cm−1 with 4 cm−1 increment using an Antaris II FT-NIR
spectrometer (Thermo Fisher Scientific, Verona, USA). The spectra were
acquired as the average of sixteen successive scans, yielding 3112 wa-
venumbers. The signals were generated in reflectance (%R) mode and
transformed into absorbance by using log 1/R. The spectra were re-
corded in triplicate for each sample, and the average spectrum was used
for data analysis. Fig. 1 shows a generic spectrum.

2.2.1. NIR spectroscopy data analysis
The data were organized in a matrix format X (154× 3112) where

each row corresponds to a bee pollen sample and the columns corre-
spond to the absorbance (log 1/R) values. Different mathematical
pretreatment such as first and second derivatives, multiplicative signal
correction (MSC) and baseline correction were tested. Using the
Pirouette®4.5 software, the vector y of concentrations was correlated
with spectral information through the partial least squares (PLS) re-
gression method on the mean centered data. The number of factors
(latent variables) in the models was selected according to the method
proposed in the Pirouette software when performing cross-validation.
In fact, the F test was used to determine if two PRESS values were
significantly different. If there was no significant difference, more
parsimonious model was chosen and only those having fewer factors
than the minimum PRESS model were compared. The presence of
outliers was verified by analyzing the plot of leverage vs. Studentized
residuals. After removing outliers, the data sets were randomly split
into two subsets: training (calibration) and test (external validation)
sets (Table 2: Ca, 106/30; Mg, 112/29; Zn, 111/27; P, 118/30; K, 100/
36 samples for calibration/test sets, respectively). Then, the PLS models
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were rebuilt for the training sets and after, the predictions were per-
formed for the test sets. The final regression models were assessed by
the values of coefficient of determination for the training sets (R2 Cal),
standard error of calibration (SEC), standard error of cross validation
(SECV) and the relative error (RE%). The prediction ability of the
models was evaluated by external validation sets (test sets), through the
coefficient of determination for the test sets (R2 Pred), the standard
error of prediction (SEP) and the residual predictive deviation (RPD).
The analytical quality of the models was evaluated by the limits of
detection (LOD) and quantification (LOQ) (Ferreira, 2015). In order to
verify some critical statistical assumptions concerning the residual

distribution, besides the graphical evaluation of the residuals of the
calibration models, the Durbin-Watson (DW) statistical test with a
significance level α=0.05, was performed (Krämer, 2011. The equa-
tions applied to obtain the validation parameters are shown in
Supplementary Material, Table S2.

3. Results and discussion

3.1. Quality control and method performance of experimental
determination

The method performance was confirmed by analytical figures of
merit as linearity, accuracy, precision and limits of detection and
quantification. The analytical curves linearity was verified by the cor-
relation coefficient (r) values close to 1 for all minerals (r= 1.000 for
Ca and Zn, 0.995 for Mg, 0.995 for K and 1.000 for P). The limits of
detection (LOD) and quantification (LOQ) for ICP method were below
0.006 and 0.03mg L−1, respectively, except for P (0.009 and
0.04mg L−1, respectively). Due to the lack of reference certified ma-
terial for bee pollen, the accuracy was evaluated by recovery tests
considering mineral levels in bee pollen: Ca (20.05 and 31.00mg L−1),
K (20.05 and 36.00mg L−1), Mg (30.00 and 50.00mg L−1), P (25.00
and 40.00mg L−1) and Zn (0.80 and 1.00mg L−1). Mean results ranged
from 76% to 101%, mostly close to 100%. For determining the preci-
sion of the method, the tests were performed with 8 replicates under the
same conditions. The coefficient of variation was calculated for the 8
independent analytical replicates and the results ranged between 1.5
and 5.6% (Morgano et al., 2012).

Table 1
Mineral concentrations (in mg per kg) of 154 bee pollen samples collected from eleven Brazilian States and Federal District.
Adapted from Morgano et al. (2012)

Statea Nb Statistic Calcium Magnesium Zinc Phosphorus Potassium

(mg kg−1)

BA 37 Mean ± SD 3135 ± 746 1444 ± 341 52 ± 8 5239 ± 744 5960 ± 1588
SC 30 Mean ± SD 1691 ± 376 966 ± 337 38 ± 8 4458 ± 1144 4683 ± 1818
SP 23 Mean ± SD 1346 ± 336 884 ± 215 54 ± 11 4397 ± 909 4434 ± 1840
SE 18 Mean ± SD 3479 ± 829 1597 ± 222 53 ± 13 6886 ± 980 7376 ± 1123
PR 10 Mean ± SD 1511 ± 280 1315 ± 827 39 ± 9 4760 ± 909 4205 ± 2272
MG 10 Mean ± SD 1401 ± 295 789 ± 303 41 ± 15 3399 ± 747 3182 ± 811
ES 10 Mean ± SD 1814 ± 527 915 ± 446 40 ± 9 3257 ± 707 3509 ± 1235
RS 9 Mean ± SD 1838 ± 334 994 ± 245 47 ± 6 4658 ± 1078 3869 ± 1167
DF 3 Mean ± SD 1723 ± 29 1384 ± 77 43 ± 1 5078 ± 425 7044 ± 1693
MT 2 Mean ± SD 2310 ± 138 1744 ± 124 43 ± 5 3691 ± 687 4993 ± 123
PI 1 Mean ± SD 3724 1627 76 5778 6542
CE 1 Mean ± SD 3511 1668 56 6439 6413

Total 154 General mean ± SD 2215 ± 984 1179 ± 455 47 ± 12 4828 ± 1309 5089 ± 1981
Interval 828–4670 348–3621 5–76 2177–8165 1431–9910

a BA (Bahia); SC (Santa Catarina); SP (São Paulo); SE (Sergipe); PR (Paraná); MG (Minas Gerais); ES (Espírito Santo); RS (Rio Grande do Sul); DF (Distrito Federal); MT (Mato Grosso);
PI (Piauí); CE (Ceará).

b N: number of samples.

Fig. 1. Generic NIR spectrum of bee pollen samples.

Table 2
Parameters for evaluation and validation of the best PLS models obtained.

y Training/test setsa Pre-treatmentb F Out R2 SEC SECV SEP Mean RE% RPD

cal val pred

Ca 106/30 1D+MSC 7 18 0.93 0.78 0.85 235 398 337 10.1 2.1
Mg 112/29 1D 7 13 0.90 0.80 0.79 131 179 180 10.2 2.2
Zn 111/27 1D+MSC 7 16 0.87 0.76 0.76 4.0 5.2 4.6 7.0 2.0
P 118/30 2D+MSC 7 6 0.96 0.87 0.80 265 462 608 5.0 2.8
K 100/36 2D+MSC 9 18 0.97 0.77 0.76 303 883 864 5.2 2.1

a Original data matrix dimensions 154×3112. y, dependent variable: analyzed bee polen minerals. The results are shown in original units.
b 1D: first derivative; 2D: second derivative; MSC: multiplicative signal correction. F: number of factors. out: outliers.
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3.2. Partial least square regression – PLS

PLS regression models were built with the training sets for Ca, Mg,
Zn, P and K. Different pre-processing methods were tested to the mean
spectra and the best results were obtained by combining multiplicative
signal correction to first and second derivatives. Specific pretreatments
and statistical results for the final models are summarized in Table 2.

The spectral pretreatment in the regression models for calcium,
magnesium and zinc were first derivative (Supplementary Material, Fig.
S1), such that the regression vectors presented similar profiles. For
phosphorus and potassium the data were transformed by the second
derivative (Supplementary Material, Fig. S2) that confers a different
aspect to the regression vector spectra (Fig. 2). For the first three PLS
models, it is observed signals between 4000 and 7000 cm−1 in the re-
gression vector that could be correlated to the organic constituents of
bee pollen and to the corresponding mineral components, considering
the possible metal-organic matter associations. The NIR technology can

be applied to mineral quantification, due to the association of these
elements with the organic materials (González-Martín et al., 2015).
Although it is generally believed that application of vibrational spec-
troscopy is quite limited for mineral element determinations, there are
several studies published in this field (Schmitt et al., 2014; González-
Martín et al., 2007, 2015; Sauvage, Frank, Stearne, & Millikan, 2002).

The coefficients of determination (R2) for calibration displayed in
Table 2 were higher for P and K, which were the most abundant con-
stituents among the quantified minerals. The mean percent calibration
error (RE%) were lower than 7% for Zn, P and K. The reference vs.
predicted values from calibration and validation sets for the PLS models
are shown in Fig. 3. Linearity is observed in all plots, but the best fitted
models were obtained for phosphorus and potassium, which presented
the lowest RE%: 5.0 and 5.2, respectively. The agreement between
experimental and predicted contents of calcium and magnesium are
satisfactory, with RE% around 10%. The analyzed mineral contents
presented high range of variation (Table 1) that can explain, in part, the

Fig. 2. Regression vectors for PLS regression models built for mineral constituents of bee pollen samples.
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difficulty to obtain better results. However, the results found in this
article are similar to those obtained by González-Martín et al. (2015), in
which the determination of these minerals were carried out by NIR
spectroscopy and modified PLS for a set of 71 samples of propolis from
different sources (Galicia, Castilla-León, Chile), using ICP OES for mi-
neral quantification. The authors found the following coefficients of
determination (R2) for calibration: Ca (0.83), Mg (0.70), Zn (0.87), P
(0.94) and K (0.95). The values found in the present work (Table 2)
were slightly better: Ca (0.93), Mg (0.90), Zn (0.87), P (0.96), and K
(0.97).

The linearity of the method was assessed by visual inspection of the
residuals from PLS models vs. predicted values (Supplementary
Material, Figs. S3–S7). The points are satisfactorily distributed in a
horizontal line centered at the origin, indicating their random behavior,

the absence of systematic trends in the residuals distribution and that
the models are not biased. Besides, the Durbin-Watson (DW) test
(Krämer, 2011) was applied to detect the presence of autocorrelation in
the residuals from the regression analyses. The obtained values at 95%
of confidence were greater than the critical value of 1.3 and the asso-
ciated p values were greater than 0.05 for all minerals, and so, there is
no statistical evidence that the residuals are autocorrelated
(Supplementary Material, Table S3).

The predictive capacity of the models was assessed by the coeffi-
cient of determination for the test set (R2 Pred) and by the residual
predictive deviation (RPD). This parameter is defined as the ratio of
standard deviation of reference data in calibration set to standard error
of cross-validation. According to Saeys, Mouazen and Ramon (2005), a
value for RPD between 2.0 and 2.5 makes approximate quantitative

Fig. 3. Plots of reference vs. predicted values obtained from PLS models built for mineral contents in bee pollen samples. Calibration set (■). Validation set (*).
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predictions possible. For values between 2.5 and 3.0, and above 3.0, the
prediction is classified as good and excellent, respectively. The RPD
values calculated for all of the models were above 2.0. Phosphorus
presented the best result for RPD (2.8), followed by Mg with RPD equal
2.2. The values for (R2 Pred) were between 0.76 and 0.85.

The results indicated that in general the models built for these mi-
nerals are capable to make approximate predictions, except for phos-
phorus, whose RPD value indicates that good predictions can be made.

3.3. Figures of merit

In order to improve the validation of the results, figures of merit
were calculated. Sensitivity, limit of detection (LOD) and limit of
quantification (LOQ) were estimated by the conventional method
(Ferreira, 2015). The meaning of these figures of merit was included in
Supplementary Material, Table S2, and the results, in Table 3. The re-
sults for LOD and LOQ were compared to the minimal concentrations
for each mineral (the concentrations range are displayed in Table 1).
The limits of detection found are quite below the minimal values found
for all of the minerals. With respect to the limit of quantification, al-
though the values are high, they are below the minimal concentrations
for all minerals in the samples of the training sets. These results in-
dicated that NIR-PLS method is useful to detect and quantify Ca, Mg,
Zn, P and K.

4. Conclusions

The results confirmed that NIR spectroscopy associated to PLS re-
gression can be applied to the quantification of minerals in bee pollen
samples with a wide range of contents of Ca, Mg, Zn, P and K. The
obtained coefficients of determination (R2) for calibration, internal and
external validation indicated that the models are validated and the best
PLS model was that built for phosphorous (P), which is one of the
minerals present in higher amounts in the analyzed bee pollen samples.

According to the residual predictive deviation (RPD) results, the
built PLS models are capable to make good predictions for phosphorus
(P), and an approximate prediction to the other ones.

In addition, this work confirms that the method based on vibrational
spectroscopy and chemometrics can be successfully applied for mineral
quantification in bee pollen samples, probably due to mineral – organic
matter association.
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