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Abstract
This study aimed to evaluate the quality changes of the minimally processed escarole 
under passive modified atmosphere, packaged in different flexible plastic packages, 
which included polyvinyl chloride (PVC) stretch film, low‐density polyethylene 
(LDPE) bag, polypropylene (PP) bag, and bi‐oriented polypropylene (BOPP) bag, dur‐
ing﻿storage﻿for﻿20﻿days﻿at﻿0°C﻿and﻿90%–95%﻿RH.﻿The﻿atmosphere﻿of﻿16%﻿O2 and﻿3%﻿
CO2 formed in the PVC overwrap package provided the lowest browning index and 
the best conservation of ascorbic acid, chlorophyll, and carotenoids. During the ex‐
periment, no differences in phenolic compounds and polyphenol oxidase activity 
among the treatments were observed, while the activity of peroxidase showed peaks 
in﻿different﻿analysis﻿days.﻿Weight﻿loss﻿of﻿all﻿samples﻿did﻿not﻿exceeded﻿1%.﻿The﻿mini‐
mally processed escarole showed sensitivity to high CO2 concentrations. Thus, a sim‐
ple PVC stretch film provided the best visual and nutritional preservation of the 
minimally processed escarole.
Practical applications
Escarole is one of the most consumed leafy vegetable as a minimally processed 
 product, however, there is no information about its quality changes associated with 
the package. This produce is widely commercialized in the same package of other 
leafy vegetables. This research has focused on application of passive modified at‐
mosphere technology for quality preservation of escarole during storage, in order to 
indicate the most adequate package for its quality and nutritional conservation. The 
results implied that the quality of minimally processed escarole is better‐maintained 
using PVC stretch film, which is quite different from the usual plastic bags used for 
minimally processed leafy vegetables. This information is quite interesting at pro‐
cesser and market levels in order to standardize the packaging of this product and 
prolong its visual and nutritional quality.

1  | INTRODUC TION

Escarole (Cichorium endive var. Latifolia L.) is a leafy vegetable largely 
consumed﻿cooked﻿or﻿as﻿salad﻿in﻿Europe,﻿Western﻿Asia,﻿and﻿part﻿of﻿
America.﻿ It﻿ is﻿ considered﻿ a﻿ rich﻿ source﻿ of﻿ bioactive﻿ compounds,﻿

such as phenolic compounds and carotenoids, which have antioxi‐
dant effects, preventing degenerative diseases in the human body 
(Azevedo‐Meleiro﻿&﻿Rodriguez‐Amaya,﻿2005;﻿Feltrim,﻿Cecílio﻿Filho,﻿
Rezende,﻿ &﻿ Barbosa,﻿ 2008;﻿ Mascherpa,﻿ Carazzone,﻿ Marrubini,﻿
Gazzani,﻿&﻿Papetti,﻿2012;﻿Tiveron﻿et﻿al.,﻿2012).
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The market for minimally processed products (MPP) is one 
of the fastest growing segments on the food sector, due to the 
high consumer demand for fresh and healthy foods ready to eat 
or﻿with﻿easy﻿preparation﻿(Cozzolino﻿et﻿al.,﻿2016).﻿Due﻿to﻿the﻿peel‐
ing and cutting steps, the fresh cut products are highly perishable, 
hence they are commercialized under refrigeration to ensure se‐
curity﻿and﻿proper﻿shelf﻿life﻿for﻿commercialization.﻿Additionally﻿to﻿
low temperature, others techniques such as modified atmosphere 
(MAP)﻿has﻿been﻿used﻿to﻿increase﻿the﻿shelf﻿life﻿of﻿these﻿products,﻿
reducing water loss and retarding the growth of microorganisms 
(Esturk,﻿Ayhan,﻿&﻿Gokkurt,﻿2014;﻿Mantilla,﻿Mano,﻿Vital,﻿&﻿Franco,﻿
2010).

Modified﻿atmosphere﻿packaging﻿ (MAP)﻿ technique﻿aims﻿ to﻿con‐
trol in‐pack O2 and CO2 concentrations though the exchanging of 
this gases between outside atmosphere and the headspace inside 
the MPP package, which is formed naturally by the vegetables (Rai, 
Kaur,﻿&﻿Patil,﻿2011).﻿The﻿most﻿critical﻿ factor﻿ to﻿obtain﻿ the﻿desired﻿
MAP﻿is﻿the﻿package﻿specification,﻿especially﻿the﻿ones﻿related﻿to﻿bar‐
rier properties. If a package with very low oxygen transmission rate 
is used in MPP with high respiratory rate, it can result in a reduction 
of the internal level of O2, leading to anaerobic respiration, loss of 
quality, and increasing the risk of contamination by anaerobic patho‐
gens (Chinsirikul et al., 2014).

On the other hand, high CO2 content may cause injuries, such 
as necrosis, taste losses, unpleasant odor development, accelera‐
tion﻿of﻿nutritional﻿loss,﻿and﻿degradation﻿of﻿plant﻿tissues﻿(Hodges﻿&﻿
Toivonen,﻿2008;﻿Poubol﻿&﻿Izumi,﻿2005).﻿Passive﻿modification﻿of﻿the﻿
atmosphere is a simple application and low‐cost technique for the 
conservation﻿of﻿MPP﻿(Jiang,﻿Joyce,﻿&﻿Terry,﻿2001).

The quality of the MPP involves a number of attractive attributes 
to the consumer, such as appearance, texture, flavor and nutritional 
value.﻿ However,﻿ these﻿ characteristics﻿ are﻿ affected﻿ during﻿ storage.﻿ It﻿
could occur leaf yellowing or darkening, browning on the cut‐off points, 
and physiological disorders. These symptoms can be reduced or alle‐
viated, depending on the atmosphere composition within the package 
(Manolopoulou,﻿ Lambrinos,﻿ Chatzis,﻿ Xanthopoulos,﻿ &﻿ Aravantinos,﻿
2010;﻿Martínez‐sánchez,﻿Tudela,﻿Luna,﻿Allende,﻿&﻿Gil,﻿2011).

There are limited information on the use of different packaging and 
the adequate balance of headspace atmosphere composition on min‐
imally processed escarole. Thus, the aim of this study was to evaluate 
the effects of passive modified atmosphere on the visual, physiological, 
biochemical, and nutritional aspects of minimally processed escarole.

2  | MATERIAL AND METHODS

2.1 | Plant Material and Experimental Setup

Escarole (Cichorium endive﻿var.﻿ Latifolia﻿ L.﻿ cv﻿ Amazonas﻿
Gigante) were obtained from conventional farm located in 
Piracicaba (São Paulo, Brazil) and immediately transported to 
the Physiology and Biochemistry Postharvest Laboratory of 
the﻿ University﻿ of﻿ São﻿ Paulo,﻿ under﻿ refrigerated﻿ conditions.﻿
The material were standardized according to its size, color and 
absence of mechanical damage. The selected escaroles were 
washed with tap water and then cut in the base of the head to 
separate the leaves, which have passed through the new se‐
lection. The washed leaves were transferred to a cold room at 
15°C and sanitized by immersion in sodium hypochlorite so‐
lution﻿ (200﻿mg/L)﻿ at﻿ 5°C﻿ for﻿10﻿min.﻿After﻿ sanitization,﻿whole﻿
leaves were manually cut into strips with a stainless steel knive. 
The slices were again sanitized for 5 min and centrifuged for 
1.5﻿min﻿ in﻿ domestic﻿ centrifuge﻿ (Arno,﻿ São﻿ Paulo,﻿ SP,﻿ Brazil)﻿
with﻿average﻿angular﻿velocity﻿of﻿760﻿x﻿g﻿to﻿remove﻿the﻿excess﻿
water.﻿After﻿cutting,﻿150﻿g﻿of﻿escarole﻿were﻿packed﻿in﻿different﻿
plastic films: low‐density polyethylene (LDPE) bag, the most 
common package used for MPP in Brazil; polypropylene (PP) 
bag; polypropylene bi‐oriented (BOPP) bag and PVC (polyvinyl 
chloride) stretch film. The first three packs had dimensions of 
21 × 24 cm and were heat sealed. For the third treatment with 
the PVC film, the leaves were placed in polystyrene trays (21 
× 14.5 × 1.5 cm) which were wrapped with the stretch film. 
All﻿samples﻿were﻿stored﻿at﻿0°C﻿and﻿90%–95%﻿RH﻿for﻿20﻿days.﻿
Analyses﻿were﻿performed﻿on﻿day﻿0,﻿after﻿processing﻿and﻿then﻿
following every four days until the 20th day of storage. Table 1 
shows the package film properties concerned to O2 and water 
vapor permeabilities.

2.2 | Experimental design and statistical analysis

The experimental design was completely randomized in a factorial 
scheme﻿4﻿×﻿6,﻿with﻿four﻿treatments﻿and﻿six﻿periods﻿of﻿analysis,﻿ in‐
cluding time zero (after processing). Three replicates were used for 
weight loss, physical, chemical, and gas analysis and triplicates for 
pigment analysis, enzyme activity and total phenolic compounds. 
The﻿ results﻿were﻿submitted﻿ to﻿analysis﻿of﻿variance﻿ (ANOVA),﻿with﻿

Film Thickness (µm) O2 TR at 23°C  (mL m−2d−1)
WVTR at 38ºC and 90% RH (g 
water m−2 d−1)

PVC 14 5.000 361

PP 30 2.927 5.72

LDPE 30 6.270 5.71

BOPP 30 1.396 4.17

Notes. O2 TR: Oxigen transmission rate; WVTR: Water vapor transmission rate; LDPE: low‐density 
polyethylene; PP: polypropylene; BOPP: polypropylene bi‐oriented; PVC: polyvinyl chloride.

TA B L E  1   Thicknesses, oxygen, and 
water vapor transmission rates of the 
selected films
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averages compared by Tukey test (p ≤ 0.01﻿≤﻿0.05).﻿The﻿data﻿were﻿
submitted to the Pearson correlation coefficient (r), were considered 
significant correlations between variables, values >0.700. Statistical 
analyzes were performed using the statistical software Statistical 
Analysis﻿System﻿Model﻿9.3﻿(SAS,﻿2011).

2.3 | Atmosphere composition inside the packages

The concentrations of gases in the headspace of the packages 
were﻿monitored﻿using﻿a﻿gas﻿analyzer﻿CheckMate﻿9900﻿O2/CO2 PBI 
Dansensor﻿(Minneapolis,﻿MN,﻿USA).﻿The﻿gas﻿samples﻿were﻿taken﻿via﻿
syringe (hypodermic needle) coupled silicone septa previously set in 
individual containers. The values were expressed as percentage in vol‐
ume (v/v). The Day 0 gas analysis was performed 1 hr after sealing the 
packages, which were maintained at experimental storage conditions.

2.4 | Browning Index, Total Chlorophyll and 
Carotenoids Content

For browning index (BI) determination were used 3 replicates, ana‐
lyzing 10 pieces of minimally processed escarole strips from each 
replicate. The BI was based on the proportion of leaf area affected 
following rating scale from 0 (no browning) to 3 (severe browning). 
BI was calculated by the formula: IE = Σ (browning note × percent‐
age of the affected area corresponding to the sample) according to 
Pen and Jiang (2003). Samples with IE higher than 2 were considered 
unmarketable. For quantification of total chlorophyll and total carot‐
enoids﻿content,﻿0.25﻿g﻿of﻿ sample﻿were﻿mixed﻿with﻿a﻿80%﻿acetone﻿
solution, and centrifuged at 10,000 × g for 10 min at 4°C. The su‐
pernatant was used for the measurement of pigments by means of 
a spectrophotometer (Biochrom, model pound S22) at wavelengths 
of﻿663,﻿646﻿and﻿470﻿nm﻿for﻿determination﻿of﻿chlorophylls﻿a,﻿b,﻿and﻿
carotenoids, respectively, from which the values were calculated 
the total values of chlorophyll and carotenoids. The formulas used 
were﻿described﻿by﻿Lichtenthaler﻿(1987).﻿The﻿results﻿were﻿expressed﻿
as milligrams of the pigment per 100 g fresh weight (100 mg/g FW).

2.5 | Ascorbic acid content

The extract for analysis was prepared by homogenized 30 g of the 
sample with 10 mL of distilled water. This mixture was filtered to 
obtain﻿the﻿ liquid﻿extract.﻿Ascorbic﻿acid﻿content﻿was﻿determined﻿by﻿
titration of a 10 mL aliquot of the extract diluted in 50 mL of oxalic 
acid﻿ (10%)﻿with﻿DCFI﻿ indicator﻿ (indofenol‐sodium﻿2,6‐dichlorophe‐
nol) until color changed. The results were expressed in mg of ascorbic 
acid﻿per﻿100﻿g﻿fresh﻿weight﻿(100﻿mg/g﻿FW)﻿(Carvalho﻿et﻿al.,﻿1990).

2.6 | Total phenolic compounds and polyphenol 
oxidase (PPO) and peroxidase (POD) activity

The total phenolic compounds (TPC) were determined according 
to﻿the﻿methodology﻿of﻿Singleton﻿and﻿Rossi﻿ (1965),﻿with﻿adapta‐
tions. The extract was prepared by milling 1 g of sample, added 

to﻿9﻿mL﻿ethanol﻿and﻿centrifuged﻿at﻿15,000﻿xg﻿at﻿4°C﻿for﻿20﻿min.﻿
For the measurement sample were mixed 0.3 mL of the plant 
extract﻿with﻿0.75﻿mL﻿of﻿Folin–Ciocalteu﻿10%;﻿1.20﻿mL﻿of﻿water﻿
and﻿0.75﻿mL﻿of﻿4%﻿sodium﻿carbonate,﻿and﻿incubated﻿in﻿the﻿dark﻿
for 2 hr. The TPC analysis was performed in spectrophotometer 
(Biochrom,﻿model﻿ Libra﻿ S22)﻿ at﻿ 765﻿nm﻿ in﻿ triplicate.﻿ The﻿ calcu‐
lation of total phenolic compounds was carried out by drawing 
the standard curve with gallic acid. The results were expressed 
in mg of gallic acid equivalents per 100 grams of fresh sample 
(100﻿mg﻿GAE﻿g–1 FW). The extract used for enzyme analysis was 
elaborated adapting the method used by Zhan, Fontana, Tibaldi, 
and﻿Nicola﻿ (2009):﻿ 0.5﻿g﻿ of﻿ frozen﻿ leaves﻿were﻿ added﻿ to﻿ 12﻿mL﻿
of﻿50﻿mM﻿sodium﻿phosphate﻿buffer﻿(pH﻿7.0)﻿(on﻿ice),﻿and﻿subse‐
quently centrifuged at 20,000 x g for 20 min 4°C. The enzyme 
activity was carried out by spectrophotometry. To analyze the 
activity of polyphenol oxidase (EC. 1.10.3.1 PPO) was followed 
the methodology proposed by Degl’Innocenti, Guidi, Pardossi, 
and﻿ Tognoni﻿ (2005)﻿ and﻿ modified﻿ by﻿ Zhan﻿ et﻿ al.﻿ (2009).﻿ The﻿
analysis was performed by reading at 480 nm of 0.1 mL of the 
enzyme﻿ extract﻿ incubated﻿ with﻿ 1.9﻿mL﻿ of﻿ 25﻿mM﻿ catechol﻿ in﻿
quartz﻿cuvettes.﻿After﻿a﻿minute﻿of﻿the﻿first﻿reading,﻿a﻿new﻿read‐
ing was performed. It was considered as an enzymatic unit PPO, 
the minimum difference in absorbance of 0.001 per minute be‐
tween readings. The results were expressed as PPO units per 
mg﻿protein﻿(U﻿mg–1 protein). For peroxidase activity (EC 1.11.1.7 
POD), reading followed the recommendations of Degl’Innocenti 
et﻿ al.﻿ (2005):﻿ the﻿ sample﻿ contained﻿ 0.16﻿mL﻿ of﻿ the﻿ extract﻿ in‐
cubated with 0.004 mL of distilled water, 0.2 mL of 35 mM hy‐
drogen﻿peroxide﻿ and﻿1.6﻿mL﻿of﻿10﻿mM﻿guaiacol.﻿Readings﻿were﻿
taken immediately after the addition of guaiacol and after 1 min 
at a wavelength of 470 nm. Were considered as a POD unit, the 
minimum increase in absorbance of 0.001 per minute. The results 
were expressed in micromoles of guaiacol oxidized per minute 
per mg protein (mmoL guaiacol min–1 mg–1 protein). Protein analy‐
sis﻿was﻿performed﻿by﻿the﻿method﻿of﻿Bradford﻿(1976)﻿using﻿bovine﻿
serum albumin as standard.

2.7 | Weight loss

The weight loss was determined by the difference of the initial 
weight of the samples with the weight values obtained at each ex‐
perimental evaluation period. The results were expressed in per‐
centage of mass loss.

3  | RESULTS

3.1 | Atmosphere composition inside the package

There were significant differences (p < 0.01) in the gas headspace 
composition of both O2 (Figure 1a) and CO2 (Figure 1b) concentra‐
tions. Initially, as the atmosphere modification started taking place, 
a rapid decrease in the percentage of O2 and, consequently, CO2 
increasing were observed for most of the tested films, except for 
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the PVC, which achieved and maintained an equilibrium atmosphere 
(16%﻿O2﻿and﻿3%﻿CO2) during the storage.

As﻿the﻿storage﻿progressed,﻿the﻿headspace﻿atmosphere﻿of﻿LDPE﻿
and PP bags reached equilibrium at the 4th day, with a slight change 
on 20th day, when the product presented a higher degree of deterio‐
ration.﻿These﻿two﻿packages﻿had﻿mean﻿values﻿of﻿12%﻿O2,﻿and﻿5%﻿CO2 
for﻿LDPE﻿and﻿11%﻿CO2 for PP. The BOPP bags provided a rapid and 
sustained reduction of O2﻿reaching﻿4%﻿on﻿the﻿20th﻿day,﻿while﻿its﻿CO2 

content﻿reached﻿and﻿maintained﻿21%﻿from﻿the﻿8th﻿day.

3.2 | Browning index, total chlorophyll and 
carotenoids content

Browning index (BI), the total chlorophyll and carotenoids content were 
affected by treatments and storage according to the F﻿test﻿(Table﻿2).﻿A﻿
slight increase in BI started at the 12th day in all the samples (Figure 1c). 
The samples packaged with PVC film had the lowest BI among all films. 
The samples packaged in PP and BOPP films exceeded the BI market‐
able limit on the last day of storage, and these samples showed largely 
darkened points on the leaves area surface. Total chlorophyll content 
(Figure 2a) and carotenoids (Figure 2b) decreased in all films tested. 
Among﻿the﻿treatments,﻿PVC﻿was﻿more﻿effective﻿(p < 0.01) in the con‐
servation of these pigments in most part of storage. On the other hand, 
PP and BOPP provided the lowest values observed in samples. The ini‐
tial chlorophyll and carotenoids values were 40.2 mg 100 g–1﻿FW and 
4.49﻿mg﻿100﻿g–1﻿FW, respectively.

3.3 | Ascorbic acid

The﻿content﻿of﻿ascorbic﻿acid﻿(AA)﻿decreased﻿gradually﻿in﻿all﻿treat‐
ments (Figure 2c). Leaves packaged in PVC statistically differed 
(p < 0.01) from the others at the 20th day, it retained the high‐
est﻿ content﻿ of﻿ AA﻿ in﻿ most﻿ part﻿ of﻿ the﻿ storage.﻿ The﻿ lowest﻿ AA﻿
values were obtained for the samples packed in BOPP. The at‐
mosphere﻿ formed﻿ inside﻿ PVC﻿ film﻿ provided﻿ a﻿ retention﻿ of﻿ 50%﻿
ascorbic acid at the last day of analysis, while the gas atmosphere 
of﻿BOPP﻿retained﻿only﻿27%﻿of﻿the﻿initial﻿value.﻿There﻿was﻿a﻿posi‐
tive﻿ correlation﻿ between﻿ the﻿ AA﻿ content﻿ and﻿ total﻿ chlorophyll﻿
(r﻿=﻿0.944),﻿ total﻿ carotenoids﻿ (r﻿=﻿0.939)﻿ and﻿ total﻿ phenolic﻿ com‐
pounds (r﻿=﻿0.893).﻿That﻿implies﻿the﻿strong﻿influence﻿that﻿the﻿AA﻿
has on these parameters and their relationship with the browning 
of﻿tissues.﻿Also,﻿a﻿negative﻿correlation﻿of﻿AA﻿with﻿BI﻿(r﻿=﻿−0.773)﻿
was observed, indicating that the degradation of this acid cause 
higher﻿darkening﻿of﻿ the﻿tissues.﻿The﻿ initial﻿AA﻿values﻿were﻿from﻿
25.50 mg 100 g–1 FW to 7.15 mg 100 g–1 FW in the BOPP samples 
at the last day of storage.

3.4 | Total Phenolic compounds content and 
Activity of PPO and POD

The total phenolic compounds (TPC) (Figure 3a) decreased during 
storage﻿ regardless﻿ of﻿ the﻿ treatments.﻿ However,﻿ some﻿ variations﻿

were observed. There were a peak increased on the TPC of PVC 
samples that differ significantly (p < 0.01) only on the 4th day. In the 
20th day, the PP and BOPP samples showed higher TPC than the 
others. In addition to the relationship with ascorbic acid, a positive 
correlation was observed between TPC and total chlorophyll con‐
tent (r = 0.877) and total carotenoids (r = 0.885). The initial values 
were﻿from﻿164.30﻿mg﻿GAE﻿100﻿g–1﻿FW and the lowest value were 
53.43﻿mg﻿ GAE﻿ 100﻿g–1﻿ FW in the LDPE films at the last day of 
storage.

No﻿significant﻿effect﻿of﻿ films,﻿ storage﻿duration﻿and﻿ their﻿ inter‐
action on the PPO activity was found (Table 2). The mean of PPO 
activity﻿was﻿0.27﻿U﻿mg–1 protein. The POD activity (Figure 3b) in the 
leaves showed significant differences (p < 0.05) between the films 
during storage. The initial values of the POD activity was 0.37 µmoL 
guaiacol min–1﻿mg–1 protein. There were peaks in the POD activity in 

F I G U R E  1  Changes﻿in﻿%O2﻿(a),﻿and﻿%CO2﻿(b)﻿concentrations﻿
inside packages and Browning Index (c) in minimally processed 
escarole during storage at 0°C. Notes. Values are the mean of three 
replicates. Vertical bars represent the standard error of the mean 
(n = 3)
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the leaves packed in PVC, BOPP and LDPE at different periods. The 
higher activity was observed in the BOPP samples on the 20th day 
(0.81 µmoL guaiacol min–1﻿mg–1 protein).

3.5 | Weight loss

At﻿the﻿end﻿of﻿storage,﻿the﻿weight﻿loss﻿was﻿less﻿than﻿1%.﻿The﻿highest﻿
weight﻿loss﻿(Figure﻿3c)﻿were﻿0.79%﻿and﻿0.52%﻿achieved﻿in﻿PVC﻿and﻿
LDPE packages respectively, that differed (p < 0.01) from the others 
at 12th day of storage.

4  | DISCUSSION

Observing the results, it could be imply that MP escarole has sen‐
sibility to high CO2 environments. The exceeded BI from PP and 
BOPP samples could be explain by the high CO2 concentration in‐
side these films, which also promoted undesirable odors in the prod‐
uct, symptom also reported in broccoli under high CO2 conditions 
(>20%)﻿in﻿the﻿package﻿(Lucera﻿et﻿al.,﻿2011).﻿Although﻿some﻿authors﻿
recommend higher proportion of CO2 then O2 inside the packages to 
preserve the quality of most minimally processed leafy vegetables 
(Barth﻿et﻿al.,﻿1993;﻿Kaji,﻿Ueno﻿&﻿Osajima,﻿1993),﻿the﻿balance﻿of﻿these﻿
gases must be manipulate in order to avoid CO2 damage or anaerobic 
respiration.

High﻿CO2 concentrations inside the package may cause physi‐
ological disorders, such as the occurrence of dark spots and tissue 
necrosis﻿ (Varoquaux﻿&﻿Wiley,﻿1994).﻿This﻿ type﻿of﻿ injury﻿caused﻿by﻿
high concentration of CO2﻿(>10%)﻿has﻿been﻿reported﻿for﻿other﻿MPP﻿
such as butter lettuce, romaine lettuce and broccoli (Cefola et al., 
2010;﻿Kim﻿et﻿al.,﻿2005;﻿Martinez,﻿Ares,﻿&﻿Lema,﻿2008;﻿Varoquaux,﻿
Mazollier﻿&﻿Albagnac,﻿1996).﻿The﻿susceptibility﻿to﻿damage﻿from﻿CO2 
in the MP escarole can be compared to the same symptom observed 

in butter lettuce MP, which showed dark spots on the surface and 
cutting areas under CO2﻿atmosphere﻿between﻿3%﻿and﻿5%﻿(Martinez﻿
et al., 2008).

The lowest chlorophyll values were observed in PP and BOPP 
due possibly to the high CO2 content accumulated inside these pack‐
ages, which could explain in part, the higher BI in these samples. 
High﻿concentrations﻿of﻿CO2﻿can﻿reduce﻿the﻿intercellular﻿pH﻿and﻿af‐
fect directly the degradation of chlorophyll. When the tissues be‐
come acid, it might occur pheophitinization, process that comprises 
replacing the magnesium ion by hydrogen ions in the chlorophyll 
protein group, converting it into pheophytin, a brownish color com‐
pound﻿that﻿causes﻿browning﻿of﻿tissues﻿(Kirca,﻿Yemis﻿&﻿Ozkan,﻿2006;﻿
Toivonen﻿&﻿Brummell,﻿2008).

The﻿ largest﻿ loss﻿ of﻿ AA﻿ was﻿ observed﻿ in﻿ the﻿ BOPP﻿ samples,﻿
probably due to the damage caused by high CO2 concentrations, 
which could have stimulated the enzyme ascorbate peroxidase 
activity,﻿ that﻿acts﻿oxidizing﻿AA,﻿converting﻿ it﻿ into﻿dehydroascor‐
bic﻿acid﻿(DHA)﻿(Lee﻿&﻿Kader,﻿2000).﻿In﻿leafy﻿vegetables,﻿CO2 acts 
on the de‐compartmentalization of these acids in chloroplasts 
(Asada,﻿ 1992).﻿ The﻿ AA﻿ content﻿ of﻿ broccoli﻿ MP﻿ also﻿ decreased﻿
when exposed to high CO2﻿(10%)﻿concentrations﻿inside﻿the﻿pack‐
age (Cefola et al., 2010).

PVC﻿film﻿had﻿better﻿conserved﻿the﻿AA﻿between﻿all﻿films﻿studied,﻿
this can be explained by the low CO2 concentrations in the packs 
(<6%)﻿and﻿the﻿antioxidant﻿action﻿of﻿endogenous﻿AA﻿and﻿carotenoids,﻿
whose contents were higher in leaves packed in this film. Our results 
shows a positive correlation between those compounds in MP esca‐
role.﻿AA﻿acts﻿protecting﻿the﻿pigments﻿against﻿chemical﻿and﻿oxidative﻿
reactions, considering that this acid has a competitive action in the 
interactions between amides and carbonyl‐amine in the enzyme ac‐
tive center that could result in the browning of tissue, in this process, 
AA﻿is﻿oxidized﻿into﻿DHA﻿(Altunkaya﻿&﻿Gökmen,﻿2009).﻿AA﻿along﻿with﻿
carotenoids have antioxidant activity in chloroplast structures, also 

Quality parameters Storage duration Film
Storage duration x 
Film

Carbon dioxide concentration 
(CO2%)

2
** ** **

Oxygen concentration (O2%) ** ** **

Ascorbic﻿acid﻿(AA﻿mg﻿100﻿g−1 FW)3 ** ** **

Total Chlorophyll (mg 100 g−1 FW)4 ** ** **

Total Carotenoids (mg 100 g−1 FW)5 ** ** **

Total﻿phenolic﻿compound﻿(mg﻿GAE﻿
100 g−1﻿FW)6

** ** **

Browning Index7 ** ns ns

Weight﻿loss﻿(%)8 ** ** **

PPO﻿activity﻿(U﻿mg−1 protein) ns ns ns

POD activity (µmol guaiacol min−1﻿

mg−1 protein)9
** ns **

Notes. The results were obtained from the average of three repetitions. **: p﻿≤﻿0.01;﻿NS:﻿not﻿signifi‐
cant. 1 = transformed data, lambda value: x2; 2 = x–0,5; 3= x0,5; 4= x0; 5= x0;﻿6=﻿x1; 7 = x–2; 8= x0;  
9=﻿x0

TA B L E  2   Effect of films, storage 
duration, and interaction (films x storage 
duration) on physiological aspects, 
nutritional and quality of escarole 
minimally processed stored at 0°C for 
20 days
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maintaining﻿the﻿integrity﻿of﻿membranes﻿(Schwartz﻿&﻿Von﻿Elbe,﻿1983;﻿
Thompson,﻿Legge﻿&﻿Barber,﻿1987).

The effect of gas concentration in phenolic content in minimally 
processed﻿escarole﻿is﻿not﻿yet﻿elucidated.﻿Although﻿it﻿is﻿known﻿that﻿
the TPC content increases during storage in MP lettuces due to 
damage﻿caused﻿by﻿cutting﻿(Martínez‐sánchez﻿et﻿al.﻿2011),﻿the﻿gas﻿
content may influence the production of these compounds. The 
TPC﻿in﻿crisphead﻿lettuce﻿was﻿reduced﻿when﻿exposed﻿to﻿20%﻿CO2 
due﻿ to﻿ decreased﻿ activity﻿ of﻿ phenylalanine﻿ ammonia‐lyase﻿ (PAL)﻿

(Mateos﻿ et﻿ al.﻿ 1993).﻿Moreover,﻿ under﻿ low﻿ concentrations﻿ of﻿O2 
(3%)﻿ in﻿ broccoli﻿ minimally﻿ processed,﻿ TPC﻿ remained﻿ unchanged﻿
for 17 days (Cefola et al., 2010). Reyes, Villarreal and Cisneros‐
Zevallos﻿ (2007)﻿ found﻿ that﻿ vegetables﻿ that﻿ have﻿ high﻿ AA﻿ con‐
tent﻿ (5–60﻿mg﻿100﻿g–1)﻿ and﻿ initial﻿TPC﻿content﻿between﻿60﻿and﻿
200 mg 100 g–1, have its phenolic content decreased after cut‐
ting and during storage, as observed in cabbage. This may explain 
the﻿decrease﻿of﻿TPC﻿content﻿in﻿all﻿treatments﻿in﻿escarole.﻿The﻿AA﻿
also has synergistic action with phenolic compounds as a reducing 
agent﻿ and﻿preventing﻿ its﻿ levels﻿ reduction﻿ (Altunkaya﻿&﻿Gökmen,﻿
2008). Thus, these compounds can reduce the loss of pigments 
reflecting in preserving color.

F I G U R E  2   Total Chlorophyll (a), total carotenoids content 
(b) and ascorbic acid content (c) in minimally processed escarole 
packaged in different films during storage at 0°C. Notes. The 
columns represent the average of three repetitions. Means 
followed by different uppercase letters within each day of storage 
and lowercase letters between treatments differ from each other 
by Tukey’s test

F I G U R E  3   Total phenolic content (a), pod activity (b) and weight 
loss (c) in minimally processed escarole during storage at 0°C. Notes. 
The columns represent the average of three repetitions. Means 
followed by different uppercase letters within each day of storage 
and lowercase letters between treatments differ from each other by 
Tukey’s test
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The activity of PPO in this study followed the same kinetics oc‐
curring in minimally processed lettuce, which have peaks of activ‐
ity in the first hours after processing and then decrease and remain 
stable during storage (Degl’innocenti et al., 2005; Mattos, Moretti 
&﻿Yosino﻿Da﻿Silva,﻿2013).﻿The﻿POD﻿activity﻿peak﻿on﻿ the﻿20th﻿day﻿
of storage at BOPP may occurred due the higher levels of CO2. The 
activity of POD and PPO are related to the defense mechanisms of 
the﻿vegetable﻿under﻿stress﻿conditions﻿(Sánchez﻿et﻿al.,﻿2000;﻿Zhang﻿
et al., 2011). Some authors had reported that the POD activity in 
different lettuce cultivars may increase or decrease during storage, 
due﻿to﻿the﻿concentration﻿of﻿gases﻿inside﻿the﻿package﻿(Ke﻿&﻿Saltveit,﻿
1989;﻿Mattos﻿et﻿al.,﻿2013).﻿Our﻿PPO﻿activity﻿values﻿were﻿in﻿accord‐
ing to previous research for MP lettuce (Degl’innocenti et al., 2005; 
Zhan et al., 2012). The PPO and POD enzymes are directly related to 
enzymatic browning of tissues. The PPO catalyzes diphenols to the 
o‐quinonas in the presence of oxygen. The quinones passes though 
polimerization﻿into﻿brown﻿pigmentation﻿(Mayer,﻿1987).﻿The﻿POD﻿has﻿
the same model of action on browning, but this enzyme uses hydro‐
gen﻿peroxide﻿(H2O2)﻿as﻿a﻿substrate﻿instead﻿of﻿oxygen﻿(Amiot﻿et﻿al.,﻿
1997;﻿Robinson,﻿1991).

In our research, no significant correlations between the PPO 
and POD enzymes, the TPC content and BI were found, indicating 
that the browning in MP escarole may have been nonenzymatic. 
This may be due to the low activity of the enzymes, which do not 
oxidize phenolic compounds sufficiently to form quinones and 
subsequent initiate the browning process. In other studies, it has 
been suggested that resistance to enzymatic browning in MP leafy 
vegetables﻿ can﻿ be﻿ associated﻿with﻿ high﻿ endogenous﻿ AA﻿ content﻿
(Bottino﻿et﻿al.,﻿2009;﻿Degl’innocenti﻿et﻿al.,﻿2007;﻿Landi﻿et﻿al.,﻿2013).﻿
The﻿AA﻿can﻿control﻿ the﻿activity﻿of﻿enzymes﻿by﻿ two﻿mechanisms:﻿
reducing﻿the﻿pH﻿of﻿the﻿cytosol﻿of﻿the﻿cells﻿or﻿reducing﻿quinones﻿to﻿
their﻿precursor﻿forms﻿of﻿diphenols,﻿during﻿this﻿process﻿AA﻿is﻿con‐
verted﻿to﻿DHA﻿(Nicolas﻿et﻿al.,﻿﻿1994;﻿Vámos‐vigyazo﻿&﻿Haard,﻿1981).﻿
The﻿DHA﻿content﻿has﻿been﻿positively﻿correlated﻿with﻿browning﻿in﻿
lettuce﻿(Heimdal﻿et﻿al.,﻿1995).﻿It﻿is﻿known﻿that﻿vegetables﻿with﻿high﻿
AA﻿content﻿are﻿able﻿to﻿control﻿effectively﻿the﻿accumulation﻿of﻿re‐
active﻿ oxygen﻿ species﻿ (ROS),﻿ such﻿ as﻿H2O2 (Cocetta et al., 2014; 
Reyes et al., 2007).

Previous﻿work﻿has﻿shown﻿that﻿ the﻿content﻿of﻿phenolics,﻿AA﻿and﻿
the PPO and POD activity has no clear correlation with the brown‐
ing﻿ in﻿MP﻿ lettuce﻿ cultivars﻿ (Cantos,﻿ Espín,﻿ &﻿Tomás‐Barberá,﻿ 2001;﻿
Degl’innocenti et al., 2005, 2007 ). It can be inferred that the main‐
tenance﻿of﻿higher﻿AA﻿levels﻿had﻿controlled﻿the﻿enzymatic﻿browning﻿in﻿
MP escarole. We can reinforce that hypothesis observing the negative 
correlation﻿between﻿the﻿AA﻿and﻿the﻿browning﻿index﻿(r﻿=﻿−0.773),﻿so﻿
we can highlight the PVC film, which was the most effective in pre‐
serving﻿ the﻿ AA﻿ content﻿ and﻿ hence,﻿ provided﻿ the﻿ lowest﻿ browning﻿
index in the product.

Although﻿PVC﻿has﻿shown﻿the﻿highest﻿weight﻿ loss﻿at﻿the﻿end﻿of﻿
storage,﻿ it﻿was﻿ less﻿ than﻿1%,﻿ this﻿might﻿happened﻿due﻿ to﻿ the﻿high﻿
water vapor transmission of this package. On the contrary, BOPP 
bags had lower weight loss than the others at most storage period, 
probably because it had the lowest water vapor transmission rate, 

which could have conserved the humidity within these samples. 
For﻿MP﻿broccoli,﻿the﻿maximum﻿weight﻿ loss﻿ is﻿7%﻿(Manolopoulou﻿&﻿
Varzakas, 2011). The loss of weight is mainly caused by the loss of 
water from the vegetable respiration, this factor along with the vapor 
transmission rate of the film to water vapor as well as the storage 
temperature are the main parameters that affect the percentage of 
weight﻿ loss﻿ (Artés﻿ &﻿Martínez,﻿ 1999).﻿ Data﻿ obtained﻿ in﻿ this﻿ study﻿
were similar to those observed by Manolopoulou et al. (2010) in min‐
imally processed chicory.

5  | CONCLUSION

In conclusion, this research indicates that PVC stretch overwrap, 
which﻿promoted﻿concentrations﻿of﻿16%﻿oxygen﻿and﻿3%﻿carbon﻿di‐
oxide, provides better preservation of visual and nutritional quality 
of﻿fresh﻿cut﻿escarole﻿for﻿up﻿to﻿20﻿days﻿at﻿0°C﻿and﻿90%–95%﻿UR.﻿We﻿
also verified that minimally processed escarole has sensitivity to high 
CO2 concentrations.
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