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An emerging group of process-induced food contaminants

including esterified forms of monochloropropanediols

(MCPDE) and glycidol (GE) has attracted significant attention of

fats and oils producers in the past few years. These substances

are mainly formed during the deodorization step of the refining

processing of vegetable oils. Literature indicates different

precursors, mechanisms and process conditions for the

formation of these contaminants. Nephrotoxicity,

developmental and reproduction toxicity, and carcinogenicity

have been described as the most important adverse effects of

MCPDE and GE. Analytical methods for the determination of

these contaminants include direct and indirect approaches,

and some of them are fully validated for different matrices.

However, important gaps still exist, which motivates many

research opportunities on this topic.
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Introduction
Edible oils are generally refined in order to remove impu-

rities and other compounds that can affect quality (smell,

appearance, and taste) and storability [1]. However, unde-

sirable chemical changes may also occur during the refining

process. Monochloropropanediol esters (MCPDE), which

comprises fatty acid esters of 3-monochloropropane-1,2-

diol (3-MCPDE) and 2-monochloropropane-1,3-diol (2-

MCPDE), and glycidyl (3-hydroxy-1,2-epoxypropane)

esters (GE) are process contaminants formed at the high
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temperatures employed during the deodorization step of

the refining process [2,3].

The presence of 3-MCPDE in a large variety of processed

foods was first described in 2004 [4], followed by the

discovery of high concentrations in refined, bleached and

deodorized (RDB) vegetable oils in 2006 [5]. The occur-

rence of GE in refined edible oils was first reported in

2008 [6]. Preliminary risk assessments raised an immedi-

ate health concern due to human exposure to these

substances, which has stimulated intensive research on

this topic [7–9,10��,11].

The list of food and ingredients in which 3-MCPDE have

been detected includes refined vegetable oils, fried foods,

infant formula, meat products, dairy products, cereal and

bakery products, soups, sauces, and roasted coffee [4,5,7–

9,12�,13]. The higher amounts found in vegetable oils,

especially in refined palm oil and derived products, have

attracted considerable attention and challenged industries

from this segment. So far, no or only traces of 3-MCPDE

have been found in unrefined vegetable oils. GE is mainly

found in refined palm oil as well, while the database related

to 2-MCPDE is still limited [10��]. Table 1 shows the

concentrations of 3-MCPDE, 2-MCPDE and GE in foods

and food ingredients recently reported in literature.

The formation of these substances in edible oils seems to

be directly associated to the refining process, and it is

favored at temperatures above 140 �C [10��]. Literature

indicates that the precursors involved in the formation of

MCPDE can be acylglycerols (triacylglycerols, diacylgly-

cerols, and monoacylglycerols) in the presence of a chlo-

rine source [22]. Palm fruits have a significant content of

chlorides which come from the endogenous metabolism

of the plant as well as the application of fertilizers contain-

ing chloride salts in palm cultivation [3]. Formation

mechanisms based on nucleophilic substitution SN2, in

which chlorine acts as a nucleophile, were proposed by

some authors [22], while others described a reaction

mediated by free radicals to generate MCPDE [23].

For GE, the main precursors have been identified as

diacylglycerols and monoacylglycerols, and the formation

of the contaminants seems to occur by an internal nucle-

ophilic attack of diacylglycerols or from the acyloxonium

ion generated by the displacement of the hydroxyl group

[10��].
www.sciencedirect.com
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Table 1

Occurrence levels of 3-MCPDE, 2-MCPDE and GE in foods and food ingredients.

Food N 3-MCPDE (mg/kg) 2-MCPDE (mg/kg) GE (mg/kg) Reference

Mean Range Mean Range Mean Range

Extra virgin olive oil 20 0.1 ND–0.2 _ _ _ _ [14]

Olive oil 15 4.0 1.0–7.6 _ _ _ _ [14]

Olive pomace oil 7 12.3 7.4–20.53 _ _ _ _ [14]

Sunflower oil 11 230 80–960 110 20–520 230 20–900 [15]

Refined palm oil 6 1330 180–2480 650 80–1650 1870 100–3550 [15]

Refined rape seed oil 5 440 30–510 210 10–310 310 10–1100 [15]

Fish oil 5 _ 1500–5500 _ 100–230 _ _ [16]

Margarine 5 _ 1300–7300 _ 630–1700 _ _ [16]

Corn oil 38 503 502–505 233 – 650 647–654 [12�]
Olive oil 9 48 48–49 86 85–88 15 0–31 [12�]
Palm kernel oil 97 624 – 270 249–291 421 415–428 [12�]
Peanut oil 8 229 – 102 90–115 148 133–162 [12�]
Rapeseed oil 294 232 224-239 109 78–140 166 144–188 [12�]
Soybean oil 191 394 392–396 167 159–175 171 157–186 [12�]
Sunflower oil 596 521 517–524 218 207–229 269 259–279 [12�]
Coconut oil/fat 204 608 608 169 143–194 476 472–479 [12�]
Palm oil/fat 501 2912 2912 1565 1563–1566 3955 3954–3955 [12�]
Margarine and similar products 170 408 406–409 159 152–166 361 358-364 [12�]
Extra virgin olive oil 46 133 ND–116 61 ND–580 323 ND–198 [17]

Olive oil 13 855 280–3777 420 170–1910 643 ND–1880 [17]

Oil blends 17 304 180–610 120 ND–250 825 310–1840 [17]

Infant formula 40 150 ND–630 _ _ 220 ND–750 [7]

Infant formula 98 370 24–920 _ _ 84.4 < LOQ–400 [18]

Infant formula 88 185 0–316 41 0–52 _ _ [19]

Beef flavoring products 6 256.3 30.6–501.7 NR NR NR NR [20]

Potato Chips 5 431.4 < LOQ–604 NR NR 1.9 ND–9.5 [21]

Corn puffs 4 195 45–267 NR NR ND _ [21]

Sticks 5 318.5 25–257 NR NR 2.3 < LOQ–11.6 [21]

Crackers 5 449.4 112–748 NR NR ND _ [21]

Peanuts 3 475.3 251–753 NR NR ND _ [21]

Granola 3 375.0 206–513 NR NR 9.6 ND–28.8 [21]

Muesli 3 353.6 86–585 NR NR ND _ [21]

Flakes 3 50.3 26–78 NR NR ND _ [21]

Sugar free Biscuits 5 599.2 133–1501 NR NR ND _ [21]

Organic farming biscuits 5 237.0 59–495 NR NR ND _ [21]

Gluten free biscuits 4 326.3 91–571 NR NR ND _ [21]

Baby Biscuits 6 283.5 88–443 NR NR ND _ [21]

Classic biscuits 5 590 363–870 NR NR ND _ [21]

Bread and bread rolls 75 29 23–36 14 9.8-19 8 7.8–8.3 [12�]
Breakfast cereals 66 26 19–33 15 10-20 17 16–18 [12�]
Fine bakery wares 88 172 167–178 87 82-92 112 112–113 [12�]

N: number of samples; NR: Not reported in the study; ND: Not detected; LOQ: Limit of quantification.
Recently, various strategies have been proposed focusing on

the reduction of these contaminants. In general, three

approaches have been investigated: removal of precursors,

such as chlorinated compounds present in the crude oil;

modifications of the processing parameters, in order to

reduce the drastic conditions applied in the refining process;

and degradation or removal of the contaminants formed in

the final product using adsorbent agents [24]. Toxicity and

analytical methods used to determine MCPDE and GE in

food products have also presented important advances,

which will be discussed in the following sections.

Toxicological aspects
Experimental evidence suggests that both 3-MCPDE and

GE are substantially hydrolysed to their free forms in the
www.sciencedirect.com 
gastrointestinal tract and elicit toxicity as free 3-MCPD and

glycidol, respectively [25,26]. The hypothesized metabolic

pathways for MCPDE and GE are illustrated in Figure 1.

Toxicological assessments were already performed for

free 3-MCPD by the Joint FAO/WHO Expert Commit-

tee on Food Additives (JECFA) at the forty-first, fifty-

seventh and sixty-seventh meetings while the esterified

form (3-MCPDE) and GE have been evaluated at the

eighty-third meeting of the Committee in 2016 [27�]. The

contaminants were also assessed by the European Food

Safety Authority (EFSA) in 2016 and 2018 [12�,28�].
Because of currently limited food occurrence data and

insufficient toxicological database, 2-MCPD and its esters

have not been evaluated so far.
Current Opinion in Food Science 2018, 24:36–42
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Figure 1
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Hypothesized metabolic pathways for 3-MCPDE and GE (adapted from IARC [30] and Rietjens et al. [49]).
Regarding free 3-MCPD and 3-MCPDE, studies con-

ducted with rodents have demonstrated that kidneys and

testes are the main target organs for toxicity. Short-term

oral exposure to 3-MCPDE resulted in increased relative

kidney weight and, at higher doses, tubular epithelial

hyperplasia, glomerular lesions and accumulation of hya-

line casts. Increased testis weight and histopathological

findings in testes and epididymis were generally observed

at doses equal to and above 30 mg/kg body weight (bw)

per day expressed as 3-MCPD. Renal tubular hyperplasia

was identified as the most sensitive toxicological end-

point [29].

Long-term carcinogenicity studies with rodents are only

available for free 3-MCPD and, according to the Interna-

tional Agency for Research on Cancer (IARC), this com-

pound is classified as a possible human carcinogen (group

2B) [30]. Carcinogenic effects were observed in a 2-year

oral (drinking-water) study in rats [29]. At the highest
Current Opinion in Food Science 2018, 24:36–42 
dose (29.5 mg/kg bw per day), the authors verified

increased incidences of renal cell tumours (adenoma or

carcinoma) in both sexes and of Leydig cell tumours in

males when compared to controls. No positive results

were found in in vivo genotoxicity experiments with both

3-MCPD and 3-MCPDE [31,32].

At its eighty-third meeting, the JECFA considered the

lowest BMDL10 (Benchmark dose lower confidence limit

for 10% increase in the response) of 0.87 mg/kg bw per

day of 3-MCPD for renal tubular hyperplasia in male rats

[27�]. This value was obtained from the study published

by Cho et al. [29], using the restricted log-logistic model,

and applied to derive a group Provisional Maximum

Tolerable Daily Intake (PMTDI) after the application

of a 200-fold uncertainty factor. The established group

PMTDI of 4 mg/kg bw for 3-MCPD and 3-MCPDE

singly or in combination (expressed as 3-MCPD equiva-

lents) replaced the previous PMTDI of 2 mg/kg bw for 3-
www.sciencedirect.com
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MCPD, established at the fifty-seventh meeting and

retained at the sixty-seventh meeting [27�]. Using the

same toxicological data, but different BMD modelling

techniques, a group Tolerable Daily Intake (TDI) of

2 mg/kg bw for 3-MCPD was recently established by

the EFSA [28�], which replaced the TDI of 0.8 mg/kg
bw previously derived in 2016 by the authority [12�].
Despite these differences, the outcome of the evaluations

was consistent and indicates that extrapolation of the

TDI/PMTDI could be observed only for specific expo-

sure scenarios, especially for children.

Glycidol is considered a genotoxic carcinogen and is

classified by the IARC as probably carcinogenic to

humans [33]. In the evaluations performed by JECFA

and EFSA, carcinogenicity was chosen as the most sensi-

tive toxicological end-point [12�,27�]. As it is not appro-

priate to establish a health-based guidance value for

substances that are genotoxic and carcinogenic, both

scientific bodies applied the margin of exposure

(MOE) approach using the results from the National

Toxicology Program (NTP) chronic bioassay for carcino-

genicity [34]. However, different reference points were

selected and some divergence was also observed.

Considering the limitations in the design of the NTP

carcinogenicity study, and in view of the high uncertain-

ties associated with the BMD analysis of the chosen

dataset, EFSA derived a T25 of 10.2 mg/kg bw per day

as reference point for the application of the MOE

approach [12�]. On the other hand, JECFA considered

the lowest BMDL10 of 2.4 mg/kg bw per day for meso-

theliomas in the tunica vaginalis/peritoneum in male rats

[27�]. Both JECFA and EFSA concluded that glycidol

represents a human health concern for some exposure

scenarios.
Table 2

Analytical methods for the determination of 3-MCPDE, 2-MCPDE and

Matrix Method Hydrolysis 

Fish oil
Indirect Alkali-catalyzed

Edible oils, fish oil, lipid fraction of margarine Indirect Alkali-catalyzed 

Oils, chips and crisps, infant formula Indirect Alkali-catalyzed 

Edible oils Indirect Alkali-catalyzed 

Edible oils and fats
Indirect Alkali-catalyzed

Several foodstuffs

Indirect Acid-catalyzed

Fish oil Indirect Enzymatic 

Vegetable oils
Direct Not applied

Edible oils Direct Not applied 

Fishery products Indirect Alkali-catalyzed 

NR: Not reported in the study.

www.sciencedirect.com 
Analytical methods
Analytical methods for the determination of 3-MCPDE,

2-MCPDE and GE can be grouped into direct and indi-

rect approaches. An overview of their application is pre-

sented in Table 2.

Indirect methods, which require the conversion of esteri-

fied forms of the compounds into their free forms before

chromatographic analysis, were firstly used followed by

gas chromatography coupled to mass spectrometry (GC–

MS). These methods present many advantages for rou-

tine purposes, such as the lowest number of analytical

standards and a simpler interpretation of results, but

generally involve several steps such as transesterification,

neutralization, salting out and derivatization

[11,13,43,44��].

Transesterification is a critical step for the cleavage of 3-

MCPDE, 2-MCPDE and GE in their respective free

forms. Acid, alkali or enzymes may be applied to catalyze

the reaction. The low stability and degradation of 3-

MCPD in alkali solution has already been demonstrated

by some authors [43]. Furthermore, under alkaline con-

ditions, the presence of GE and chlorinated compounds

can produce an overestimation of 3-MCPDE levels [45].

In contrast to the alkali-catalyzed transesterification, the

use of acid does not promote degradation of 3-MCPDE

[43]. The enzymatically catalyzed transesterification

involves the use of lipases from some biologic systems

such as Candida rugosa and can be chosen as an alternative

strategy [46].

Indirect methods also need derivatization before GC–MS

analysis. The free forms of MCPDE and GE exhibit high

polarity and low volatility, resulting in analyses with low

sensitivity [43]. Generally, phenylboronic acid (PBA) is
 GE in foods and food ingredients.

Compounds LOD (mg/kg) LOQ (mg/kg) Reference

3-MCPDE

GE

50 200
[35]20 70

3-MCPDE, 2-MCPDE 10 30 [16]

3-MCPDE, 2-MCPDE, GE 0.8–30 2.5–100 [36]

3-MCPDE 25 50 [37]

3-MCPDE

2-MCPDE

14 43
[38]17 52

3-MCPDE

2-MCPDE

GE

7 13

[39]8 15

17 31

3-MCPDE, GE NR NR [40]

3-MCPD monoesters

3-MCPD diesters

0.08–12.7 0.98–38.0
[9]0.033–18.61 0.1–55

3-MCPD diesters 10–25 25–50 [41]

3-MCPDE, 2-MCPDE, GE NR 20 [42]

Current Opinion in Food Science 2018, 24:36–42
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used to convert the compounds into more volatile deri-

vatives for instrumental analysis [44��].

On the other hand, direct methods allow the analysis of

MCPDE and GE as they are found in foods and require

simple extraction procedures, without the need of trans-

esterification and derivatization steps. High performance

liquid chromatography–mass spectrometry (LC–MS/MS)

has been employed for the identification and quantifica-

tion of the different compounds. The main drawback is

the need of a large number of analytical standards, since

each species of MCPDE and GE is identified and quan-

tified individually [13].

The American Oil Chemists’ Society (AOCS) published

three official methods (Cd 29a 13, Cd 29b 13, and Cd 29c

13) for the analysis of 3-MCPDE, 2-MCPDE and GE in

vegetable oils and fats [47]. All protocols recommend

indirect approaches and the main difference among them

is that Cd 29a uses a solution of acidic methanol while Cd

29b and Cd 29c employs an alkaline alcoholic solution. In

the method Cd 29a, GE is converted to 3-bromo-1,2-

propanediol fatty acid ester (3-MBPDE) before transes-

terification by a reaction with acid solution of sodium

bromide. In the method Cd 29b, this reaction is carried

out after the transesterification step. The method Cd 29c

involves differential measurement of GE by the applica-

tion of two protocols and does not quantify 2-MCPDE.

The AOCS Official Methods recently included the new

protocol Cd 30-15 for determination of the contaminants

in emulsions [48].

Recent publications have described analytical methods

for the determination of 3-MCPDE, 2-MCPDE and GE

in several food products [38,42]. Jedrkiewicz et al. [38]

used alkali-catalyzed transesterification and derivatiza-

tion with PBA to analyse cookies, salty deep-fried snacks

and instant products. Karl et al. [42] developed an indirect

method to analyze fish products whereas Miyazaki and

Koyama [40] optimized an enzymatic indirect method for

fish oils. The use of high-resolution mass spectrometry

(HRMS-Orbitrap) and a modified QuEChERS protocol

for sample preparation have already been cited in the

recent literature [9,41].

Conclusions
Intensive research concerning MCPDE and GE has been

conducted in the past years. Despite this, foods with high

concentrations of these contaminants are still widely

available for consumers. Toxicological assessments con-

ducted by different committees have drawn similar con-

clusions, suggesting a potential health concern, especially

for infants. The application of strategies to mitigate the

formation of the contaminants has been recommended,

but their effectiveness at an industrial level requires

efforts of all those involved in the production chain, thus

fulfilling the present gaps. Advances in analytical
Current Opinion in Food Science 2018, 24:36–42 
methods were noted, but fully validated procedures were

only available for oils, fats and margarine. Future chal-

lenges also include increasing the database of 2-MCPDE.
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