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A B S T R A C T   

Films based on polysaccharides and proteins have been widely studied as possible substitutes for food packaging 
from fossil sources. However, its notorious sensitivity to water is still one of the primary drawbacks. In this study, 
sodium alginate (SA) and hydrolyzed collagen (HC) blend films containing SiO2 nanoparticles were prepared to 
reduce the water sensitivity. The behavior of these films regarding water vapor sorption and permeability (WVP) 
was reported for nano-SiO2 concentrations ranging from 2 to 10%. At each concentration evaluated, several 
classical mathematical models of moisture sorption isotherms were adjusted to identify the mechanisms of in-
teractions between films and water. A reduction of approximately 8% in the film water content, and 30% 
reduction of WVP were observed for concentrations of nano-SiO2 higher than 6%. In addition, it was exposed that 
the moisture sorption exhibited a type III isotherm behavior, suggesting reduced interactions between the 
polymeric matrix and water vapor at low water activity. Therefore, SA/HC/SiO2 composite films could represent 
a simple, economical and sustainable alternative for packaging material with reduced sensitivity to water vapor.   

1. Introduction 

Bio-based polymers, such as proteins and carbohydrates, stand out as 
important renewable and biodegradable raw materials for sustainable 
food packaging applications (Júnior et al., 2021; Vianna et al., 2021). 
However, one of the key challenges for enabling a broad use of these 
polymers for this purpose remains their severe sensitivity to water vapor 
and poor mechanical properties (Marangoni Júnior et al., 2021). In this 
context, the formulation of blends using different biopolymers in par-
allel to obtaining composites becomes a powerful strategy in improving 
the properties for food packaging applications (Nur Hanani et al., 2014; 
Ramos et al., 2016; Xie et al., 2013; Youssef & El-Sayed, 2018). A vast 
number of biological sources demonstrate potential, but they still need 
to be extensively studied for their performance to be acceptable (Mar-
angoni Júnior et al., 2020). 

Obtained from brown algae, sodium alginate (SA) represents one of 
the most versatile polysaccharides in nature (Rahmani et al., 2017). 
Since SA is a biodegradable and non-toxic polymer, it has been exten-
sively employed in the food and medical fields (Uyen et al., 2020; 
Venkatesan et al., 2015). In the food packaging sector, SA is well-known 

to be used successfully in the production of edible films (Senturk Par-
reidt et al., 2018). However, the SA fragility and high sensitivity to water 
remain the principal difficulties in its widespread food packaging ap-
plications (Hou et al., 2019). Thus, the development of SA-based films 
blended with other polysaccharides or proteins becomes the most simple 
and attractive strategy for improving properties (Yang et al., 2020). 
Among the numerous biopolymers, such as starch, chitosan, carra-
geenan, pectin, whey protein isolate and gelatin that are available for 
the formulation of blends with SA (Tavassoli-Kafrani et al., 2016), hy-
drolyzed collagen has been little explored. 

Hydrolyzed collagen (HC) is a group of peptides that can be obtained 
by enzymatic action in an acid or alkaline environment, extracted from 
bovine, porcine and marine sources of native collagen (León-López 
et al., 2019). The HC average molar masses range from 3 to 6 kDa, which 
are considerably lower than the precursor native collagen (285–300 
kDa). Hydrolysis affects not only the size of the peptides, but also the 
physicochemical properties (improvement in water solubility and odor, 
lower viscosity, among others) (Denis et al., 2008; Zhang et al., 2006). In 
addition, the composition and degree of collagen hydrolysis comprise 
factors that significantly increase functional properties, such as 
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antioxidant capacity, antimicrobial activity and greater bioavailability 
(Li et al., 2013; Wang, Luo, et al., 2018; Wang, Luo, et al., 2018; Zhang 
et al., 2017). However, despite possessing such advantages over native 
collagen, HC is unable to form films by itself, being necessary to combine 
it with other biopolymers (Ramadass et al., 2014; Silvipriya et al., 2015). 

In this context, SA/HC blends could be simple and economical al-
ternatives in the manufacture of functional films for food packaging. The 
idea of using HC in the SA-based film formulation is to provide resulting 
material with peptides intrinsic and widely known functional properties. 
To enhance the physicochemical properties of these blends, nano-
particles inclusion appears as another easy and economically accessible 
strategy that can be used in parallel to the production of biopolymer 
blends. For example, nano-SiO2 (SiO2) has been extensively employed in 
this regard (Fabbri et al., 2006; Kavya et al., 2013; Salimi et al., 2017; 
Tabatabaei et al., 2018; Yang et al., 2016). The fundamental hypothesis 
of this work was that blends of SA and HC with different nano-SiO2 
contents could reduce the sensitivity to water vapor. That is, the higher 
the concentration of nanoparticles, the greater the barrier to water vapor 
and the lower the moisture content of the films. 

Therefore, the aim of this study was to evaluate the effect of adding 
different proportions of nano-SiO2 on the water vapor permeability and 
moisture sorption of SA/HC blend films in a broad range of relative 
humidity (0–95% RH). For this, the blend was preliminarily evaluated to 
identify the most proper proportion of SA and HC, which was used as a 
control sample for this study. Seven mathematical models of different 
sorption isotherms were adjusted to assist in the structure-properties 
correlation of sensitivity to water vapor. The importance of this work 
lies in the fact that it is a first description of interactions between SA/ 
HC/SiO2 blends and water vapor. Another novel aspect of this research 
is the identification nano-SiO2 proportions thresholds to further reduce 
the water vapor permeability and moisture content. With this, we 
believe this work may be the starting point in the expansion of hydro-
lyzed collagen containing films studies, which are still scarce. 

2. Material and methods 

2.1. Material 

The materials used in the preparation of the films were: sodium 
alginate (SA) (Dinâmica Química Contemporânea Ltda, Indaiatuba/SP, 
Brazil), hydrolyzed collagen (HC) (NaturalLife, São José do Rio Preto/ 
SP, Brazil), glycerol (Dinâmica Química Contemporânea Ltda, Indaia-
tuba/SP, Brazil), and nano-SiO2 (SiO2) with average particle size of 12 
nm (Evonik/Degussa Ltda, Americana/SP, Brazil). 

2.2. Preparation of the films 

The casting method was employed in the manufacture of sodium 
alginate/hydrolyzed collagen films with SiO2 nanoparticles (SA/HC/ 
SiO2). Sodium alginate solutions (4% w/w) were prepared by dissolving 
the biopolymer in distilled water containing glycerol as a plasticizer 
(30% w/w, considering de sodium alginate mass as calculation basis), 
hydrolyzed collagen (10% w/w, considering sodium alginate mass as 
calculation basis), and different concentrations of SiO2 nanoparticles 
were added (0, 2, 6, 8 and 10% w/w, considering sodium alginate mass 
as calculation basis). The proportion of HC used in this work was based 
on preliminary tests, in which several proportions were evaluated to 
identify the most homogeneous films. The samples were coded as SA/ 
HC, SA/HC/2%SiO2, SA/HC/6%SiO2, SA/HC/8%SiO2, and SA/HC/10% 
SiO2, respectively. Film-forming solution was heated to 80 ◦C with 
stirring for 20 min. Subsequently, the final solution was treated in an 
ultrasound bath for 15 min, to ensure a homogeneous solution and 
elimination of bubbles. After this step, 50 g of film-forming solutions 
were poured into polystyrene Petri dishes (diameter 14 cm) and dried at 
40 ◦C for 24 h in a forced air circulation oven (Ethik Technology, Var-
gem Grande Paulista/SP, Brazil). Finally, after removing the films from 

the plates, all the samples were stored in an air-conditioning chamber 
(Weiss Technik, Reiskirchen, Germany) at 25 ◦C and 75% relative hu-
midity (RH), as a step prior to the characterization processes. 

2.3. Thickness 

The SA/HC/SiO2 films thicknesses were determined in a micrometer 
with a measurement system composed of a flat granite base and dial 
indicator (Mitutoyo Co., Kawasaki-Shi, Japan), with 0.1 μm resolution, 
after conditioning, for 48 h, at 25 ± 2 ◦C and 75 ± 5% RH. The average 
thickness of each formulation sample was determined using five random 
points from five different replicates, according to the standard meth-
odology (ISO-4593, 1993). 

2.4. Moisture content 

The moisture content (MC) of each sample was determined by 
gravimetry. After drying the film sample at 105 ◦C for 24 h, in an oven 
(Ethik Technology, Vargem Grande Paulista/SP, Brazil), mass loss was 
determined using an analytical balance (Mettler Toledo, Columbus, 
Ohio, USA) with resolution of 10− 4 g. The MC values (%) were deter-
mined, using four repetitions for each sample analyzed, according to 
equation (1): 

MC=
wi − wf

wi
× 100 % (1) 

in wich wi and wf are the initial and final weights of the sample, 
respectively. 

2.5. Water vapor permeability 

The water vapor transmission rate (WVTR) and water vapor 
permeability (WVP) were determined in triplicate using the gravimetric 
method of analysis, following the methodology (ASTM-E96/E96M, 
2016). A capsule with a permeation area of 50 cm2 containing anhy-
drous calcium chloride desiccant, and an analytical balance with reso-
lution of 10− 4 g (Mettler Toledo, Columbus, Ohio, USA) were used to 
determine WVTR and WVP. The test was performed at 25 ◦C and 75% 
RH in an air conditioning chamber (Weiss Technik, Reiskirchen, Ger-
many). The WVTR (g m− 2 day− 1) was determined from the slope of the 
curve “mass change vs. time”. Finally, WVP (g m− 1 s− 1 Pa− 1) of the film 
was calculated according to equation (2): 

WVP=
WVTR × e
ps × RH1

(2) 

in which e is the specimen average thickness (μm), ps is the water 
vapor saturation pressure (23.756 mmHg at 25 ◦C), RH1 is the relative 
humidity of the chamber (75% = factor 0.75), since the relative hu-
midity inside the capsule is considered to be zero. 

2.6. Determination of the moisture sorption isotherms 

Gravimetric sorption measurements were determined for all samples 
using a controlled atmosphere Dynamic Vapor Sorption system (model 
DVS-002), Surface Measurements System (London, UK) at 25 ◦C. Only 
the adsorption test was performed, in which each sample was cut into 
pieces of ~0.5 × 0.5 cm and placed in a vacuum oven (45 ◦C) for 18 h. 
After that, the sample was placed in a desiccator to cool to room tem-
perature (~20 min), and then a sample portion with a mass of ~50 mg 
was analyzed in the equipment. During the analysis, the sample was 
exposed to the following RH profile at 25 ◦C: 0.00, 10.56, 21.11, 31.67, 
42.22, 52.78, 63.33, 73.89, 84.44, and 95% RH. The RH step lasted until 
reaching mass equilibrium. Moisture sorption of each sample at equi-
librium was calculated as the gained water mass (grams) per grams of 
dry film at the range of relative humidity. 
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2.7. Modeling of moisture sorption isotherms 

For each film sample, the experimental data were fitted to some 
classical mathematical models for moisture sorption predictions 
(Table 1). Xeq is the equilibrium moisture content in dry basis (d. b.), 
which is provided by g H2O/g of dried solids, aw is the water activity, 
and A, B, C, M0, and K are constant parameters of the models. The 
determination of such constants used to fit the data was carried out 
employing the Excel® software. The generalized reduced gradient (GRG) 
method from the Excel Solver was performed to estimate the GAB and 
BET model parameters, by minimizing the Residual Standard Deviation 
(Sres) (Equation (3)) between experimental and predicted values. The 
other models were linearized and a straight line was adjusted, allowing 
the determination of parameters A and B from the angular and linear 
coefficients. In order to evaluate the goodness of the curve fitting, in all 
cases the determination coefficients (R2) and Residual Standard Devia-
tion (Sres) were provided. The models in which R2 > 0.98 and Sres < 0.2 
were considered as good fit. 

Sres =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ (

Yexp − Ysim
)2

n − 2

√

(3)  

which Sres is the Residual Standard Deviation, Yexp is the experimental 
value, Ysim is the predicted value (simulation) and “n” is number of 
experimental data. 

2.8. Statistical analysis 

The results were statistically evaluated by means of analysis of 
variance (ANOVA) and the Tukey test to compare the average results (p 
< 0.05). 

3. Results and discussions 

3.1. Thickness and moisture content 

The thickness of the films ranged from 160.6 ± 40.2 to 195.0 ± 42.9 
μm, as shown in Table 2. Concentrations up to 8% of nano-SiO2 did not 
significantly influence (p < 0.05) the thickness of the films, when 
comparing to the control film (SA/HC). Similar results have been found 
in the literature for fish gelatin/k-carrageenan films added with 1–5% 
SiO2 (Tabatabaei et al., 2018). The SA/HC/10%SiO2 film showed the 
highest thickness value. However, the thickness of this film did not differ 
significantly (p < 0.05) from the SA/HC/2%SiO2 and SA/HC/8%SiO2 
films. The increase in the thickness of the film, comparing to the control 
sample is attributed to the higher concentration of solids (10% SiO2) in 
the polymeric matrix. 

Table 2 shows there was a significative reduction in the films 

moisture content (MC) for nano-SiO2 concentrations above 6%, 
comparing to the control sample. In addition, the films with concen-
trations of 6, 8 and 10% of SiO2 did not present significant MC difference 
(p < 0.05) between them. The reduction in MC of the composite films is 
mainly influenced by the hydrogen bonds formed between SA, HC and 
nano-SiO2 (Abdollahi et al., 2013). In addition, with the increase of SiO2, 
the carboxyl and hydroxyl groups of SA can interact with the hydroxyl 
groups of nano-SiO2, which leads to the formation of new hydrogen 
bonds. Consequently, it can cause strengthening of intermolecular in-
teractions, with reductions in bonds with other molecules of water (Yang 
et al., 2018). This phenomenon of reduction in moisture content with 
the addition of nano-SiO2 was observed by other authors in pullulan/-
whey protein isolate films (Hassannia-Kolaee et al., 2016) and sodium 
alginate/polyvinyl alcohol (Yang et al., 2018). These preliminary results 
of moisture content determined by manual gravimetry are in line with 
what was observed in the moisture sorption tests using the DVS equip-
ment. More details will be described in the subsequent sections. 

3.2. Water vapor permeability 

The water vapor barrier property is an important parameter that 
should be improved for biopolymer-based films, since these compounds 
are well-known to possess high affinity to water. When biopolymer- 
based films are applied to food it is desirable that they minimize the 
exchange of moisture between the food and the environment, and vice- 
versa (Xu et al., 2020). The water vapor transmission rate (WVTR) and 
water vapor permeability (WVP) of the SA/HC control films were 
1023.4 ± 121.9 g m− 2 day− 1 and 7.5 ± 0.3 × 10− 10 g m− 1 s− 1 Pa− 1, 
respectively (Fig. 1). The addition of 2% nano-SiO2 does not signifi-
cantly influenced (p < 0.05) the WVTR and WVP values of the films. 
That is, the low nano-SiO2 concentration did not improve the films water 
vapor barrier properties. A similar effect was found by Rane et al. (2014) 
in K-carrageenan films with 1.5% SiO2 nanoparticles. 

Conversely, comparing to the control and SA/HC/2%SiO2 film 
samples, a significant reduction (p < 0.05) was observed in the WVTR 
and WVP, when concentration of 6–10% nano-SiO2 were employed. The 
improvement in the water vapor barrier properties of films added with 
nano-SiO2 is attributed to the formation of hydrogen bonds between the 
polymeric matrix and the oxygen atoms of the nanoparticles (Hassan-
nia-Kolaee et al., 2016; Shahabi-Ghahfarrokhi et al., 2015), which can 
reduce the water solubility coefficient throughout the polymeric matrix. 
Moreover, the good dispersion of the SiO2 nanoparticles filled the void 
spaces in the film, which makes the path tortuous and consequently 
hinders the diffusion of water molecules through the polymeric matrix 
(Kristo & Biliaderis, 2007; Priyadarshi et al., 2021). 

3.3. Moisture sorption isotherms 

Fig. 2 provides the moisture sorption isotherms for all formulations, 
with comparison of the profiles simulated by the mathematical models 
that presented the best fit. It was verified, from Fig. 2 (a), that the iso-
therms for films containing different concentrations of nano-SiO2 
exhibited a similar trend. The moisture content of the films gradually 

Table 1 
Mathematical models for moisture sorption predictions.  

Model Equation Parameters 

Guggenhiem-Anderson- 
Boer (GAB) 

Xeq =

M0 × C × K × aw

(1 − K × aw)(1 − K × aw + C × K × aw)

M0, C, K 

Brunauer-Emmitt- 
Teller (BET) 

Xeq =
M0 × C × aw

(1 − aw)(1 + C × aw − aw)

M0, C 

Smith Xeq = A+ B× ln(1 − aw) A, B 
Henderson 

Xeq =

[
− ln(1 − aw)

A

]1
B  

A, B 

Flory-Huggings Xeq = A× exp(B × aw) A, B 
Oswin 

Xeq = A×

(
aw

1 − aw

)B  A, B 

Halsey 

Xeq =

[

−
A

ln(aw)

]1
B  

A, B  

Table 2 
Thickness and moisture content of the films of sodium alginate/hydrolyzed 
collagen/SiO2.  

Samples Thickness (μm) Moisture content (%) 

SA/HC 160.6 ± 40.2b 25.3 ± 1.6a 

SA/HC/2%SiO2 178.9 ± 37.5ab 25.9 ± 0.7a 

SA/HC/6%SiO2 161.5 ± 35.1b 23.1 ± 0.5b 

SA/HC/8%SiO2 180.6 ± 36.2ab 23.0 ± 0.9b 

SA/HC/10%SiO2 195.0 ± 42.9a 23.2 ± 0.3b 

The results are expressed as mean ± standard deviation. 
a, b, c The averages of results followed by the same letter in the same column do 
not differ at the 95% confidence level (p < 0.05). 
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increased linearly for aw below 0.4, with remarkably low and virtually 
equivalent values for all samples. A sharp increase in the moisture 
content of the films only started to become noticeable for aw values 
ranging from 0.4 to 0.95, with an exponential profile. According to 
Brunauer et al. this profile can be considered as a type III isotherm 
(Brunauer et al., 1940), which refers to a curvature of the convex 
isotherm towards the aw axis throughout the range. In the case of the 
SA/HC/SiO2 composite films, this behavior suggests that the attractive 
forces between adsorbed water vapor and film matrix (hydroxyls and 
carboxyl groups) are lower than the attractive forces between the water 
molecules in the liquid state. Sodium alginate, hydrolyzed collagen and 
nano-SiO2 form composites with good compatibility, that is, intermo-
lecular interactions are favored. As a result, there is a reduced avail-
ability of possible functional groups for adsorption of water molecules, 
explaining the observed behavior. 

A type III isotherm profile similar to that reported in this study was 
identified for other pure alginate-based films (Olivas & Barbo-
sa-Cánovas, 2008; Rhim, 2004), and for powdered cocona pulp micro-
encapsulated with hydrolyzed collagen and maltodextrin blend 
(Vargas-Muñoz et al., 2020). This profile is repeated for alginate films 
using glycerol as plasticizer, in which the higher the proportion of 
glycerol the higher the equilibrium moisture content. Conversely, this 
behavior differs somewhat from the sigmoidal profile widely reported 
for other pure biopolymers and blend films, such as starch (Suppakul 
et al., 2013), chitosan (Rosa et al., 2010), among others (Galus & Lenart, 
2013; Hazaveh et al., 2015; Xiao & Tong, 2013). It was observed that 
alginate films without plasticizer also tended to maintain a sigmoidal 
profile (Olivas & Barbosa-Cánovas, 2008). 

Differences between the moisture values of films with different 
concentrations of nano-SiO2 only started to be noticeable for aw > 0.6. 
Fig. 2 (a) also illustrates the moisture content of the films tends to 
decrease with the increase in the concentration of nanoparticles. For 
example, for the highest value of aw evaluated (aw = 0.95), the film 
moisture decreased from 57 to 50% d. b., comparing the control and the 
film containing 10% of nano-SiO2, respectively. Since the permeability 
could be calculated from water vapor diffusivity in the film matrix and 
the solubility coefficient, it appears that the reduction of this variable, 
even on a small scale, may have contributed to the inferior results of 
water vapor permeability obtained in this study. However, clearly the 
reduction in diffusivity due to the inclusion of obstacles (nanoparticles) 
throughout the matrix should remain the key factor for the significant 
permeability reductions observed previously in Fig. 1. 

Seven mathematical models were fitted to the experimental data of 
this study. Fig. 2 (b)–(f) provides a comparison between each experi-
mental point and the two most appropriate adjustments: GAB and Smith 
(considering the entire range of water activity - aw). Table 3 provides the 
determined parameters for all models, with the values of R2 and Sres. 

Although the GAB model had a proper fit in general, it is necessary to 
note that at low aw values there were some considerable deviations. It is 
well-known this model is more suitable for values of aw up to 0.9. In this 
way, as all experimental points in the aw domain were considered, the 
mathematical method certainly converged to parameter values that met 
the entire range of values, sacrificing deviations at the beginning of the 
domain. As the values of experimental moisture content below aw = 0.2 
were practically zero, it was considered in this study that these initial 
deviations are acceptable. The BET model did not represent properly the 
moisture content values for aw > 0.4, providing an unsatisfactory R2 and 
corroborating with what has already been observed in the literature 
(Andrade et al., 2011). Other possible justifications for these deviations 
refer to the fact that a type III isotherm does not have a “knee point” as in 
the sigmoidal profiles, which means that there is no restricted multilayer 
formation (Nazreen et al., 2020). 

Therefore, alternative models were expected for better reproduction 
of the experimental data. Smith’s empirical model was developed to 
describe the final curved portion of the water sorption isotherm of high 
molecular weight polymers (Smith, 1947). Fig. 2 and parameters 
determined in Table 3 indicate that the experimental data were well 
reproduced over all aw range. Mathematically, negative moisture con-
tent values were obtained with Smith’s model at aw < 0.2, which were 
considered to be zero to provide a physical meaning. It is significant to 
highlight that type III curve is equally known as the Flory-Huggins 
isotherm (Al-Muhtaseb et al., 2002; Nazreen et al., 2020), and this 
model was also evaluated in this study. Although it was the model with 
the most optimistic expectation, it was detected that there was a satis-
factory reproduction for aw values up to 0.7, being therefore not indi-
cated in this case. Other models were also unsatisfactory to represent the 
entire aw range. 

4. Conclusion 

Significant reductions were observed in the moisture content (MC), 
water vapor transmission rate (WVTR) and water vapor permeability 
(WVP) of the sodium alginate/hydrolyzed collagen films for nano-SiO2 
concentrations greater than 6%. Analysis of moisture sorption over a 
broad range of water activity (aw) values reveled a type III isotherm 
behavior for all the film samples, suggesting the attractive forces be-
tween adsorbed water vapor and film matrix (hydroxyls and carboxyl 
groups) are lower than the attractive forces between the water mole-
cules in the liquid state. As a general conclusion, the results indicated 
that sodium alginate, hydrolyzed collagen and nano-SiO2 form com-
posites films with good compatibility, reducing the availability of 
possible functional groups for water molecules adsorption. Therefore, 
the addition of nano-SiO2 in blended films composed of sodium alginate 
and hydrolyzed collagen can be considered a simple, environmentally 

Fig. 1. Water vapor permeability of sodium alginate/hydrolyzed collagen/SiO2 films.  
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friendly and economical alternative for reducing the sensitivity to water 
vapor. 
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Pioli Vieira: Conceptualization, Data curation, Formal analysis, Fund-
ing acquisition, Investigation, Methodology, Project administration, 
Resources, Supervision, Writing – original draft, Writing – review & 
editing. Rosa Maria Vercelino Alves: Conceptualization, Data cura-
tion, Formal analysis, Funding acquisition, Investigation, Methodology, 
Project administration, Resources, Supervision, Writing – review & 
editing. 

Fig. 2. Equilibrium moisture sorption isotherm of sodium alginate, hydrolyzed collagen and SiO2 composites films (SA/HC/SiO2) as a function of water activity (aw) 
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