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a b s t r a c t 

The growing world population and its environmental impact motivate searching for new protein sources for 
the human diet. Agro-industrial by-products are potential sources due to high protein content. This study char- 
acterized meals from five sources (pumpkin seed, flaxseed, chia seed, sesame seed, and grapeseed), about the 
proximate composition, antinutritional factors (ANFs), amino acid profile (AA), and in vitro protein digestibility 
(IVPD). These by-products present protein content up to 40% and IVPD between 70-85%. ANFs results presented 
a low phytic acid content for all seed meals and high tannins content in grapeseed meal. In terms of essential 
AA, the chia seed meal did not show any deficiency. In contrast, the first limiting AA in sesame meal and brown 
flaxseed meal was lysine, and in pumpkin seed meal, grapeseed meal, and flaxseed meal were sulfur amino 
acids. These agro-industrial by-products are alternatives for replacing animal protein sources due to recovering 
high-quality proteins, minimizing adverse environmental impacts, and conserving scarce natural resources. 

1

 

r  

v  

a  

Y  

f  

e  

a  

a
 

b  

d  

M  

s  

h  

s  

p  

s  

s  

m  

K  

(  

t  

l  

c  

p  

l  

p  

2  

n  

2  

s  

c  

b  

2  

a  

o
 

n  

t  

s  

A  

h
R
2

. Introduction 

Nowadays, food security is a primary challenge for humankind. The
ising world population (about 10 billion by 2050) and limited en-
ironmental resources demand proteins from sustainable and renew-
ble sources, searching for alternative foods ( Kumar et al., 2021b ;
uliarti et al., 2021 ). Plant proteins, insects, algae, and by-products from

ood processing are novel protein sources that can meet this macronutri-
nt’s required intake ( Sá et al., 2020 , 2019 ). Besides, in terms of sustain-
bility and carbon footprint, the plant proteins from food by-products
re ideal for substituting animal protein sources. 

Oilseed meals (also called oilseed press cakes), which are the
y-products from edible oil industries after oil extraction, are un-
erestimated as protein sources for human consumption ( Kotecka-
ajchrzak et al., 2020 ). Often discarded or conventionally used as feed-

tock for animal feed or as fertilizer, these by-products can present a
igh protein content (15 to 50 %) ( Vinayashree and Vasu, 2021 ). Many
tudies evaluated oilseed by-products proteins as promising sources of
rotein for human nutrition and animal protein replacement, such as
unflower seed, rapeseed (or canola) ( Jia et al., 2021 ), flaxseed, sesame
eed ( Terrien, 2017 ), pumpkin seed ( Vinayashree and Vasu, 2021 ),
ustard seed ( Chakraborty et al., 2021 ), grapeseed ( Fantozzi, 1981 ;
∗ Corresponding author. 
E-mail address: bruno.carciofi@ufsc.br (B.A.M. Carciofi). 
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amel et al., 1985 ), cottonseed ( Kumar et al., 2021a ), and peanut
 Terrien, 2017 ). Furthermore, these oilseed by-products have great po-
ential as an economic source of fatty acids and bioactive metabo-
ites. Studies demonstrated the presence of significant amounts of
arotenoids, phenolic compounds, tocopherols, and phytosterols in
umpkin seeds ( Rabrenovi ć et al., 2014 ; Veronezi and Jorge, 2012 );
inolenic and linoleic acid, and lignans in flaxseeds ( Shim et al., 2014 );
olyunsaturated fatty acids and tocopherols in chia seeds ( Gahfoor et al.,
018 ); phytosterols, polyunsaturated fatty acids, tocopherols, and lig-
ans (e.g., phenylpropanoid compounds) in sesame seeds ( Pathak et al.,
014 ); linolenic and linoleic acid, tocopherols, and catechins in grape-
eeds ( Al Juhaimi and Özcan, 2018 ). Also, these by-products may be
alled health foods which provide health benefits to consumers and can
e used as food supplements because of their nutrients ( Sunil et al.,
016 ). Therefore, the use of agricultural food by-products is a feasible
lternative that can reduce waste disposal and increase limited sources
f bioactive compounds and non-animal proteins ( Poji ć et al., 2018 ). 

In this way, the hypothesis in this study is that these residues as high
utritional value proteins for human nutrition. To the best of the au-
hors’ knowledge, information about the nutrition quality of pumpkin
eed, flaxseed, chia seed, sesame seed, and grapeseed meals is scarce.
lso, no data is presented in the literature concerning the protein di-
estibility of the by-products, which brings the novelty of this study.
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f  

p  
hese oilseed meals were selected based on an extensive literature re-
iew on the nutritional quality of plant proteins ( Sá et al., 2020 ). There-
ore, the present work aimed to determine the chemical composition, the
resence of antinutritional factors (ANFs), the in vitro protein digestibil-
ty (IVPD), the amino acid (AA) profile, and the Amino Acid Score of the
ilseed by-products. 

. Materials and methods 

.1. Chemicals 

The chemicals used in this study are n-hexane (99% P.A., Neon®),
thyl ether (99.8%, Anidrol®), sulfuric acid (P.A., Anidrol®), acetic
cid (P.A., Neon®), boric acid (P.A., Neon®), hydrochloric acid (P.A.,
eon®), thioglycolic acid (P.S., Neon®), ethanol (99.5%, Anidrol®),
ethanol (P.A., Neon®), 2,2 ′ -bipyridyl (purity 99%, Sigma, St. Louis,
O, USA), BAPNA (purity ≥ 98%, Sigma, St. Louis, MO, USA), selenium

ioxide (purity > 99%, Sigma, St. Louis, MO, USA), dimethyl sulfox-
de (P.A., Neon®), vanillin (Neon®), catechin hydrate (purity ≥ 96%,
igma, St. Louis, MO, USA), copper sulfate II pentahydrate (P.A.,
eon®), sodium hydroxide (P.A., Neon®), ammonium iron(III) sulfate
odecahydrate (purity 99%, Sigma, St. Louis, MO, USA), and sodium
alt hydrate of phytic acid ( ≥ 90% phosphorus, Sigma, St. Louis, MO,
SA). 

.2. Sample Collection 

Pumpkin seed ( Cucurbita moschata ) protein meal (PSM) and brown
axseed ( Linum usitatissimum ) meal (FM1) was kindly provided by Vital
tman Ltda., São Paulo, Brazil. Flaxseed meal (FM2) was donated by Cis-
ra Ltda., Rio Grande do Sul, Brazil. Chia seed ( Salvia hispanica ) meal
CSM) was kindly provided by Agropecuaria Produza S.A., Paraguay.
esame seed ( Sesamum indicum L.) meal (SSM) was donated by Sésamo
eal Ind. Com. Prods. Alims. Ltda., São Paulo, Brazil. Grapeseed ( Vitis

abrusca ) meal (GSM) and grapeseed meal flour (GSF) was kindly pro-
ided by Econatura Produtos Ecológicos e Naturais Ltda., Rio Grande
o Sul, Brazil. The oilseed industries cited above employ cold-pressing
xtraction to obtain oil from the seeds, without organic solvents. The
amples were ground and stored at -18 °C for further analysis. 

.3. Analytical Methods 

.3.1. Proximate composition 

The proximate analysis of the raw oilseed by-products was carried
ut using official AOAC procedures ( 2012 ): moisture gravimetrically at
05 °C for 24 h (method 925.09); ash by calcination using a muffle fur-
ace at 550 °C (923.03); lipid gravimetrically after n-hexane extraction
920.39); nitrogen by standard Kjeldahl method (954.01); and crude
ber (962.09). All determinations were performed in triplicates. Pro-
ein composition was calculated as nitrogen value multiplied by 6.25 as
he conversion factor ( AOAC International, 2012 ), and total carbohy-
rate content on a dry basis was estimated by calculating the percentile
ifference to crude proteins, lipids, ashes, and fibers. The Atwater con-
ersion factors of 9 kcal/g (for lipids) and 4 kcal/g (for proteins and
arbohydrates) ( FAO, 2003 ) were used to estimate the energy value of
he samples. 

.3.2. Antinutritional factors 

.3.2.1. Trypsin inhibitors. The determination of trypsin inhibition ac-
ivity was performed according to Kakade et al. (1974) . The trypsin as-
ay contained trypsin from the bovine pancreas (salt-free lyophilized
owder, ≥ 10.000 BAEE units/mg of protein, product no. T1426, Sigma,
hemical, St. Louis, MO, USA) and BAPNA reagent (N 𝛼-Benzoyl-DL-
rginine 4-nitroanilide hydrochloride, purity ≥ 98%, product no. B4875,
igma, Chemical, St. Louis, MO, USA) as substrates. One gram of finely
round sample (80 mesh) was extracted with 50 mL of NaOH 0.01 M for
2 
 h at room temperature. Supernatant aliquots of 1 mL were pipet into
ubes, and 1 mL of distilled water was added. Distilled water (2 mL) was
sed as a reagent blank. Extracts were incubated with 2 mL of trypsin
olution (0.02 mg/mL in 0.001 M HCl) and 5 mL of BAPNA reagent
0.4 mg/mL in Tris-buffer pH 8.2, containing CaCl 2 ) in a water bath at
7 °C. After 10 min, 1 mL of 30% (v/v) acetic acid was added to ter-
inate the reaction. Trypsin inhibitor activity (TIA) was spectrophoto-
etrically determined at 410 nm (UV/VIS spectrophotometer, Hitachi
-1900) against a reagent blank. The trypsin inhibition activity (TIA)
as expressed as the trypsin inhibition unit (TIU) per milligram of the

ample. 

.3.2.2. Tannins. The tannin content was estimated by the colorimetric
ethod of vanillin-HCl, as described by Burns (1971) . The tannins were

xtracted for 24 h at room temperature, which 1 g of finely ground sam-
le (80 mesh) was mixed with 50 mL of methanol. Supernatant aliquots
f 1 mL were pipet into tubes, and 5 mL of vanillin-HCl reagent was
dded. Then, the colored solution was measured spectrophotometrically
t 500 nm (UV/VIS spectrophotometer, Hitachi U-1900). Catechin (( + )-
atechin hydrate, purity ≥ 96%, product no. 22110, Sigma, Chemical,
t. Louis, MO, USA) was used as the reference standard, and the tannin
oncentration was expressed in mg catechin per gram of sample. 

.3.2.3. Phytic acid. The phytic acid content was estimated by the
ethodology of Haug and Lantzsch (1983) . The samples were extracted

or 24 h at room temperature, which 1 g of finely ground sample (80
esh) was mixed with 50 mL of 0.2 N HCl. Supernatant aliquots of
.5 mL were pipet into tubes, and 1 mL of ferric solution (ammonium
ron(III) sulfate dodecahydrate, purity 99%, product no. 221260, Sigma,
hemical, St. Louis, MO, USA) was added, and tubes were put in a boil-

ng water bath (100 °C) for 30 min. At room temperature, 1.5 mL of
he 2,2 ′ -bipyridine (purity ≥ 99%, product no. D216305, Sigma, Chem-
cal, St. Louis, MO, USA) solution was added. Then, the colored solution
as measured spectrophotometrically at 519 nm (UV/VIS spectropho-

ometer, Hitachi U-1900). Sodium salt hydrate of phytic acid ( ≥ 90%
hosphorus, product no. 68388, Sigma, Chemical, St. Louis, MO, USA)
as used as a phytate reference solution for the standard calibration

urve. The phytic acid was estimated as μg per gram of sample. 

.3.3. In vitro protein digestibility (IVPD) 

The Hsu et al. (1977) method with minor modifications ( Tinus et al.,
012 ) was used to determine the IVPD of oilseed by-products. The pro-
ein suspension (6.25 mg/mL of distilled water) was adjusted to pH
.0 with 0.1 N NaOH or 0.1 M HCl while stirring at 37°C. An enzyme
ix containing 1.6 mg of trypsin (porcine pancreatic trypsin type IX-

, 13.000-20.000 BAEE units/mg protein, product no. T0303, Sigma,
hemical, St. Louis, MO, USA), 1.3 mg of peptidase (porcine gastric mu-
osa pepsin, 3.200–4.500 units/mg protein, product no. P6887, Sigma,
hemical, St. Louis, MO, USA), and 3.1 mg of 𝛼-chymotrypsin (bovine
ancreatic chymotrypsin type II, ≥ 40 units/mg protein, product no.
4129, Sigma, Chemical, St. Louis, MO, USA) per mL was maintained

n an ice-bath and adjusted to pH 8.0. The enzymatic solution was added
o the protein solution at a 1:10 v/v ratio and stirred at 37 °C. A rapid
ecrease in pH value occurred due to the amino acid carboxyl groups
eleasing from the protein chain by the proteolytic enzymes. The pH
ixture was measured after 10 min using a portable pH meter (model

esto 205, Testo Instrument Co.). IVPD as a percentage of digestible pro-
ein was estimated according to pH variation after 10 min ( ∆pH 10min ),
s shown in Equation 1. 

VPD ( % ) = 65 . 66 + 18 . 10 × ΔpH 10 min (1)

.3.4. Amino acid composition 

The determination of total amino acids of the raw material was per-
ormed by reverse phase column (C18 from Phenomenex) chromatogra-
hy in a high-performance liquid chromatograph (HPLC, SHIMADZU®),
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Table 1 

Proximate composition and energy values of oilseed by-products (raw samples). 

Samples 
Moisture 
(%) 

% Dry weight basis Energy 
(kcal/100g) 

Protein 1 Lipids Ash Crude fiber Carbohydrate 2 

PSM 8.84 ± 0.02 f 40.9 ± 0.1 d 14.1 ± 0.1 c 4.92 ± 0.01 c 27.5 ± 0.5 c 12.57 340.87 

FM1 10.14 ± 0.06 g 28.6 ± 0.7 a 11.6 ± 0.1 b 5.57 ± 0.03 d 11.9 ± 0.6 b 42.33 388.12 

FM2 8.42 ± 0.01 e 28.3 ± 0.8 a 13.6 ± 0.6 bc 6.08 ± 0.01 e 10.3 ± 0.5 ab 41.72 402.47 

CSM 8.06 ± 0.05 d 27.5 ± 0.8 a 5.4 ± 0.4 a 7.15 ± 0.05 f 26.7 ± 0.9 c 33.25 291.60 

SSM 4.27 ± 0.03 a 35.3 ± 0.7 c 32.8 ± 0.1 d 8.26 ± 0.06 g 8.2 ± 0.1 a 15.44 498.16 

GSM 4.58 ± 0.01 b 9.4 ± 0.3 b 7.1 ± 0.5 a 2.31 ± 0.01 a 58.6 ± 0.7 e 22.59 191.86 

GSF 5.34 ± 0.02 c 9.9 ± 0.1 b 5.8 ± 0.1 a 2.48 ± 0.01 b 51.4 ± 0.4 d 30.42 213.48 

All values are means ± standard deviation. 
a–g Different letters in the same column indicate a significant difference ( p < 0.05 by Tukey’s test). 
1 N x 6.25. 
2 The available carbohydrate content was determined by calculating the percentile difference from all the other constituents 
according to the formula: [100 g dry weight - (g crude protein + g lipids + g ash + g crude fiber)]. 
PSM: pumpkin seed meal; FM1: brown flaxseed meal; FM2: flaxseed meal; CSM: chia seed meal; SSM: sesame seed meal; 
GSM: grapeseed meal; GSF: grapeseed meal flour. 
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Table 2 

Protein, ash, and fiber composition of oilseed by-products in a dry 
weight and lipid-free basis. 

Samples 
% Dry weight and lipid-free basis 

Protein Ash Crude fiber 

PSM 47.6 5 .7 32.0 

FM1 32.4 6 .3 13.5 

FM2 32.8 7 .0 11.9 

CSM 29.1 7 .6 28.2 

SSM 52.5 12 .3 12.2 

GSM 10.1 2 .5 63.0 

GSF 10.5 2 .6 54.4 

PSM: pumpkin seed meal; FM1: brown flaxseed meal; FM2: flaxseed 
meal; CSM: chia seed meal; SSM: sesame seed meal; GSM: grapeseed 
meal; GSF: grapeseed meal flour. 
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ccording to the method described in Hagen et al. (1989) . The release of
ndividual amino acids occurs in acid hydrolysis at 110 °C for 22 h, using
 M of hydrochloric acid and phenol solutions. After the hydrolysis, 𝛼-
minobutyric acid (Sigma-Aldrich®, St. Louis, MO, USA) is added as an
nternal standard. The identification of the amino acids was performed
y comparison with an external standard (Pierce, PN 20088). The in-
ernal standard 𝛼-aminobutyric acid was used for the quantification of
otal amino acids, according to White et al. (1986) method. 

The amino acid composition of the raw samples was used to estimate
he Amino Acid Score as [mg of amino acid in 1 g of test protein/mg
f amino acid in requirement pattern] × 100 ( WHO/FAO/UNU Expert
onsultation, 2007 ). The lowest Amino Acid Score calculated reflects
he first limiting amino acid in the protein source ( Nosworthy et al.,
017 ). 

.4. Statistical analysis 

The software Statistica® (v.13.5, Statsoft Inc.) was used to perform
he experimental data statistical analysis, adopting a confidence level
f 95% in all cases. The Tukey’s test was used to compare the chem-
cal composition, ANFs, and IVPD of oilseed by-products. Results are
xpressed as mean ± standard deviation of replicated samples. 

. Results and discussions 

.1. Proximate composition 

The chemical composition and energy values of the oilseed by-
roducts are presented in Table 1 . In terms of protein content, the
ry weight basis results for PSM are higher in comparison for edi-
le whole pumpkin seeds reported in the literature (30.2–36.5%) ( El-
dawy and Taha, 2001 ; Rogerson, 2017 ) and fibers (4.4–12.1%) ( El-
dawy and Taha, 2001 ; García-Aguilar et al., 2015 ). For FM1 and FM2,
ber and protein content are higher than edible whole flaxseed reported

n the literature (4.8% and 20.3%, respectively) ( Kajla et al., 2015 ).
u et al. (2012) also studied the composition of flaxseed meal, and

he protein content was higher (32.7%) than the results presented here.
he CSM and SSM results for protein content are similar to those found

n the literature for edible whole chia seeds ( Olivos-Lugo et al., 2010 )
nd sesame seeds. The protein results for GSM and GSF are also simi-
ar to other studies (8.2–11.8%) ( Fantozzi, 1981 ; Kamel et al., 1985 ).
he PSM, FM1, FM2, CSM, and SSM contain high protein content (35–
1%). Similar results are reported in the literature for oilseed meals (up
o 50%) ( Sarker et al., 2015 ; Terrien, 2017 ). These results are also com-
arable to other meals, such as watermelon seed (27.6%) ( Lakshmi and
aul, 2011 ), rapeseed (32.8%) ( Jia et al., 2021 ), black mustard seed
3 
38.2%), and yellow mustard seed (28.8%) ( Sarker et al., 2015 ). Further-
ore, comparing these sources to the traditional plant protein sources

n the human diet, soybean, common beans, and peas present protein
ontent of 35.3%, 19.9%, and 21.7%, respectively ( Terrien, 2017 ). 

Nevertheless, the protein intake in the human diet is predominantly
nimal-based proteins, such as UHT milk (3.5% of protein in whole
roduct (w.p.) / 27.8% in a dry weight basis (d.b.)) ( Pestana et al.,
015 ), eggs (6.5% (w.p.) / 10.9% (d.b.)) ( Murcia et al., 1999 ), meat
rom chicken breasts (20.9% (w.p.) / 58.6% (d.b.)) ( Fakolade, 2015 ),
nd meat from beef steaks (23.1% (w.p.)/ 84.6% (d.b.)) ( Wahrmund-
yle et al., 2000 ). Therefore, the results presented here for the PSM,

M1, FM2, CSM, and SSM show the potential of these residues as high
rotein sources in food formulations and human nutrition. 

Additionally, all the oilseed meals present high amounts of dietary
bers (8–59 g/100 g). In terms of dietary fibers, a high source con-
ains > 6 g/100 g ( WHO, 2004 ); therefore, all by-products evaluated in
his work are considered a high dietary fiber source. 

In terms of vegetable materials, it is well known that any genotype
omposition can vary depending on the climate, production site, soil
ype, cultural practices, and even the process of oil extraction (e.g., the
se of high or low temperatures, presence of organic solvents, equipment
eatures, pressing capacity, among others conditions), which could bring
ignificant differences on the composition of these oilseeds. This uncer-
ainty in genotype expression may justify some differences presented in
his work compared to the literature. The oilseed meal samples were
btained employing cold-pressing extraction without organic solvents.
his extraction technique presents great advantages (e.g., higher qual-

ty of the oil extracted); however, it can present lower oil yields than oil
xtraction using high temperature and organic solvents. The results of
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Table 3 

Antinutritional factors concentration and in vitro protein digestibility of oilseed by-products (raw 

samples). 

Samples 
TIA 
(TIU/mg sample) 

Tannins 
(mg catechin/g sample) 

Phytic acid 
(μg/g sample) IVPD (%) 

PSM 12.7 ± 1.0 b n.d. a 37.0 ± 0.1 e 85.4 ± 0.5 b 

FM1 30.8 ± 3.0 a n.d. a 28.1 ± 0.1 b 83.3 ± 0.1 ab 

FM2 33.6 ± 4.0 a n.d. a 27.0 ± 0.8 b 83.9 ± 0.1 ab 

CSM 11.0 ± 1.0 b n.d. a 18.7 ± 0.8 c 81.1 ± 0.8 a 

SSM 39.4 ± 4.0 a n.d. a 23.0 ± 0.4 d 81.4 ± 0.2 a 

GSM 29.2 ± 1.0 a 282 ± 6 c n.d. a 70 ± 1.0 c 

GSF 36.9 ± 2.0 a 163 ± 8 b n.d. a 71 ± 2.0 c 

n.d. = not detected. 
All values are means ± standard deviation. 
a–e Different letters in the same column indicate a significant difference ( p < 0.05 by Tukey’s test). 
PSM: pumpkin seed meal; FM1: brown flaxseed meal; FM2: flaxseed meal; CSM: chia seed meal; 
SSM: sesame seed meal; GSM: grapeseed meal; GSF: grapeseed meal flour. 

Table 4 

Amino acid composition (g/100 g of protein) of the raw oilseed by-products. 

AA composition 
(g/100 g protein) 

Samples 

PSM FM1 FM2 CSM SSM GSM GSF 

Essential (EAA) 

Histidine (His) 1.48 ± 0.06 AB 2.47 ± 0.01 C 1.32 ± 0.05 A 2.10 ± 0.40 BC 2.56 ± 0.01 C 1.69 ± 0.04 AB 1.71 ± 0.05 AB 

Isoleucine (Ile) 4.05 ± 0.03 A 4.50 ± 0.01 C 4.62 ± 0.03 D 4.01 ± 0.01 A 3.99 ± 0.01 A 4.38 ± 0.01 B 4.38 ± 0.01 B 

Leucine (Leu) 6.60 ± 0.03 D 5.97 ± 0.01 B 6.21 ± 0.01 C 6.77 ± 0.05 A 6.72 ± 0.04 A 7.28 ± 0.01 E 7.43 ± 0.02 F 

Lysine (Lys) 4.66 ± 0.02 E 4.11 ± 0.01 C 4.27 ± 0.01 D 4.87 ± 0.05 F 3.00 ± 0.01 B 3.67 ± 0.01 A 3.61 ± 0.01 A 

Threonine (Thr) 1.39 ± 0.08 B 4.04 ± 0.01 A 4.19 ± 0.01 A 3.95 ± 0.02 A 3.85 ± 0.01 A 1.80 ± 0.20 BC 2.00 ± 0.20 C 

Valine (Val) 4.69 ± 0.03 A 5.32 ± 0.01 C 5.40 ± 0.03 C 4.91 ± 0.03 D 4.75 ± 0.01 A 5.15 ± 0.01 B 5.19 ± 0.01 B 

Total sulfur amino acids (Met + Cys) 1.30 ± 0.05 A 3.39 ± 0.02 B 1.70 ± 0.10 A 3.65 ± 0.08 BC 4.50 ± 0.20 C 1.20 ± 0.50 A 0.84 ± 0.01 A 

Total aromatic amino acids 

(Phe + Tyr) 

10.09 ± 0.04 D 7.20 ± 0.01 A 7.56 ± 0.01 AB 8.75 ± 0.05 C 8.48 ± 0.02 BC 7.50 ± 0.02 AB 7.00 ± 0.70 A 

Non-essential (NEAA) 

Alanine (Ala) 3.63 ± 0.05 C 4.69 ± 0.01 A 4.82 ± 0.01 A 5.14 ± 0.02 D 4.65 ± 0.02 A 4.30 ± 0.10 B 4.34 ± 0.09 B 

Arginine (Arg) 14.00 ± 1.00 C 10.00 ± 0.01 A 10.46 ± 0.04 A 10.99 ± 0.06 A 13.46 ± 0.02 C 7.85 ± 0.01 B 7.82 ± 0.02 B 

Aspartic acid (Asp) 11.94 ± 0.03 E 11.26 ± 0.02 C 11.39 ± 0.04 D 10.21 ± 0.03 A 9.61 ± 0.02 B 10.10 ± 0.03 A 10.17 ± 0.02 A 

Glutamic acid (Glu) 20.40 ± 0.10 A 21.31 ± 0.01 C 21.88 ± 0.03 D 19.30 ± 0.10 B 20.56 ± 0.04 A 25.40 ± 0.05 E 25.69 ± 0.04 F 

Glycine (Gly) 7.30 ± 0.70 A 6.52 ± 0.01 A 6.57 ± 0.01 A 5.23 ± 0.08 B 5.25 ± 0.02 B 9.39 ± 0.04 C 9.60 ± 0.10 C 

Proline (Pro) 3.65 ± 0.01 A 4.06 ± 0.02 B 4.36 ± 0.02 C 4.23 ± 0.01 BC 3.82 ± 0.03 A 5.40 ± 0.08 D 5.68 ± 0.09 E 

Serine (Ser) 4.90 ± 0.20 A 5.15 ± 0.03 AB 5.16 ± 0.01 AB 5.92 ± 0.03 B 4.82 ± 0.02 A 4.89 ± 0.02 A 4.60 ± 0.50 A 

Total EAA (g/100 g protein) 34.26 ± 0.07 C 37.01 ± 0.01 B 35.30 ± 0.10 D 39.00 ± 0.10 E 37.80 ± 0.20 B 32.70 ± 0.30 A 32.20 ± 0.60 A 

Total NEAA (g/100g protein) 65.74 ± 0.07 E 62.99 ± 0.01 A 64.70 ± 0.10 D 61.00 ± 0.10 C 62.20 ± 0.20 A 67.30 ± 0.30 B 67.80 ± 0.60 B 

Total AA (g/100g sample) 36.10 ± 0.10 F 28.93 ± 0.02 A 29.09 ± 0.08 A 25.90 ± 0.20 D 34.40 ± 0.06 E 9.12 ± 0.01 B 9.67 ± 0.02 C 

A–F Different letters in the same line indicate a significant difference between the raw samples for each amino acid ( p < 0.05 by Tukey’s test). 
PSM: pumpkin seed meal; FM1: brown flaxseed meal; FM2: flaxseed meal; CSM: chia seed meal; SSM: sesame seed meal; GSM: grapeseed meal; GSF: grapeseed 
meal flour. 
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ipids (on a dry weight basis) demonstrated that oil residual is still pre-
ented in the oilseed meals, where SSM has the higher content (32.8%),
nd CSM has the lower content (5.4%), which dilutes the concentra-
ion of other nutrients in the proximate composition. The elimination of
he oil residual factor will increase the concentration of the other con-
tituents. Therefore, the concentrations of protein, ash, and crude fiber
n a lipid-free basis were calculated, and the results are presented in
able 2 . 

.2. Antinutritional factors 

The presence of trypsin inhibitors, phytates, and tannins in food by-
roducts from plant origin are unfavorable for protein digestion; there-
ore, they must be removed to increase protein digestibility ( Sá et al.,
019 ). The significance of phytates and tannins lies in the extent of their
nfluence on the bioaccessibility of minerals, and the trypsin inhibitors,
s the term itself indicate, inhibit protein absorption on binding with
roteases ( Lakshmi and Kaul, 2011 ). These compounds are naturally
ynthesized due to plant physiology, at the beginning of seed formation
trypsin inhibitors) or the plant healing process (tannins) and during
aturation (phytic acid) ( Sá et al., 2019 ). The characterization of the
 (  

4 
ilseed by-products in terms of these so-called antinutritional factors,
uch as trypsin inhibition activity, the tannin, and phytic acid concen-
ration, is shown in Table 3 . 

The raw residues from the oil extraction industries showed elevated
rypsin inhibitor activity (11–39.4 TIU/mg). These results are higher in
omparison for rapeseed meal (1.74 TIU/mg) ( Mansour et al., 1993 ) and
ther oilseeds, such as paprika seed flour (1.96 TIU/mg), watermelon
eed flour (1.46 TIU/mg), and pumpkin seed flour (1.39 TIU/mg) ( El-
dawy and Taha, 2001 ). The trypsin inhibitor activities for oilseed by-
roducts are also higher when compared to some traditional sources of
lant proteins, such as pea (1.84–2.2 TIU/mg) ( Frias et al., 2011 ) and
entil (5.12 TIU/mg) ( Samaranayaka, 2017 ). The results are similar to
hose found for common beans (18.1 TIU/mg) ( Nikmaram et al., 2017 ).
owever, the TIA presented here for oilseed residues are lower than soy-
ean (41.5–96.9 TIU/mg) ( Lusas and Rhee, 1995 ; Samaranayaka, 2017 ),
ucuna pruriens seeds (78.7 TIU/mg) ( Siddhuraju et al., 1996 ), and

arkade seed flour (41 TIU/mg) ( Abu-tarboush and Ahmed, 1996 ). 
The highest level of tannin was noticed in GSM (282 mg/g), which

as already expected due to the grape be a rich source of tannins.
he other oilseed by-products did not contain tannins. The results for
SM and GSF were higher in comparison to rapeseed meal (9–15 mg/g)
 Wanasundara et al., 2017 ), and other oilseeds, such as pumpkin seed
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Table 5 

Amino Acid Score according to the WHO/FAO/UNU requirement pattern for adults (g/100g protein), of the raw oilseed by-products. 

Amino acids 

Requirement 
pattern 1 

(g/100g protein) 

Amino Acid Score (%) 2 

PSM FM1 FM2 CSM SSM GSM GSF 

Essential 

Histidine (His) 1.5 99 ± 4 AB 165 ± 1 C 88 ± 4 A 138 ± 26 BC 170 ± 1 C 113 ± 3 AB 114 ± 3 AB 

Isoleucine (Ile) 3.0 135 ± 1 A 150 ± 1 C 154 ± 1 D 134 ± 1 A 133 ± 1 A 146 ± 1 B 146 ± 1 B 

Leucine (Leu) 5.9 112 ± 1 D 101 ± 1 B 105 ± 1 C 115 ± 1 A 114 ± 1 A 123 ± 1 E 126 ± 1 F 

Lysine (Lys) 4.5 104 ± 1 E 91 ± 1 C 95 ± 1 D 108 ± 1 F 67 ± 1 B 82 ± 1 A 80 ± 1 A 

Threonine (Thr) 2.3 61 ± 4 B 176 ± 1 A 182 ± 1 A 172 ± 1 A 167 ± 1 A 80 ± 11 BC 89 ± 10 C 

Tryptophan (Trp) 0.6 - - - - - - - 

Valine (Val) 3.9 120 ± 1 A 137 ± 1 C 139 ± 1 C 126 ± 1 D 122 ± 1 A 132 ± 1 B 133 ± 1 B 

Total sulfur amino acids (Met + Cys) 2.2 59 ± 3 A 154 ± 1 B 80 ± 5 A 166 ± 3 BC 204 ± 10 C 53 ± 24 A 38 ± 1 A 

Total aromatic amino acids 

(Phe + Tyr) 

3.8 266 ± 1 D 190 ± 1 A 199 ± 1 AB 230 ± 1 C 223 ± 1 BC 197 ± 1 AB 184 ± 19 A 

First limiting amino acid - Met ± Cys Lys Met ± Cys - Lys Met ± Cys Met ± Cys 

A–F Different letters in the same line indicate a significant difference between the raw samples for each essential amino acid ( p < 0.05 by Tukey’s test). 
PSM: pumpkin seed meal; FM1: brown flaxseed meal; FM2: flaxseed meal; CSM: chia seed meal; SSM: sesame seed meal; GSM: grapeseed meal; GSF: grapeseed 
meal flour. 
1 WHO/FAO/UNU (2007) Expert Consultation Report for adults. 
2 Amino Acid Score: (mg of amino acid in 1 g of test protein/mg of amino acid in requirement pattern) × 100. 
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a  
our (1.7 mg/g), watermelon seed flour (2.4 mg/g), and paprika seed
our (4.8 mg/g) ( El-Adawy and Taha, 2001 ). The concentration of tan-
in in GSM is also higher when compared to traditional sources of plant
roteins, such as pea (2.06 mg/g) ( Frias et al., 2011 ) and common bean
0.65 mg/g) ( Espinosa-Páez et al., 2017 ). 

The highest level of phytic acid was noticed in PSM (0.0037 g/100 g).
his result is lower than those found in the studies for pumpkin
eed flour (2.37 g/100 g) ( El-Adawy and Taha, 2001 ) and pump-
in seeds (0.299 g/100 g) ( Giami, 2004 ). The results presented
ere, in terms of phytic acid composition, are also lower than other
ilseed meals, such as watermelon seed (0.99 g/100 g) ( Lakshmi and
aul, 2011 ), and rapeseed (or canola) (3.3 g/100 g) ( Wanasundara et al.,
017 ), and traditional sources of plant proteins, such as pea (0.35–
.19 g/100 g) ( Frias et al., 2011 ), soybean (1–2 g/100 g) ( Gilani and
ee, 2003 ), chickpea (0.12–1.5 g/100 g) ( Dadon et al., 2017 ), com-
on bean (1.59 g/100 g) ( Alonso et al., 2000 ), and rice (0.74 g/100 g)

 Albarracín et al., 2015 ). The low phytic acid content may be a conse-
uence of the oil extraction processing that changes the original chem-
cal composition due to chemical affinity. This result highlights the im-
ortance of the oil extraction step on improving protein digestion by
educing this ANF. 

Results appointed in this study are different from those into the liter-
ture, which could be directly associated with the oil extraction process
eading to remove some oilseeds ANFs. However, it does not exclude the
ntrinsic differences due to climate, soil type, production site, cultural
ractices, and others. At the present moment, to the best of the authors’
nowledge, no data in the literature was reported about the compo-
ition of antinutritional factors in pumpkin seed, flaxseed, chia seed,
esame seed, and grapeseed meals. The antinutritional factors evaluated
n terms of the content of phytic acid, tannins, and trypsin inhibitor
ctivity indicated the PSM, FM1, FM2, CSM, SSM, GSM, and GSF as
romising sources of proteins for humans. 

.3. In vitro protein digestibility (IVPD) 

The IVPD is a useful tool for evaluating the nutritive quality of a
ood protein, combined with the amino acid composition and bioavail-
bility ( Sá et al., 2019 ). The results of IVPD for all the raw oilseed meals
valuated are shown in Table 3 . 

The protein digestibility presented significant differences ( p < 0.05)
mong the by-product raw samples, where PSM presented the highest
VPD (85%), and the GSM and GSF presented the lowest (70%). The
esults of IVPD presented here for the PSM were higher compared to
nother study (71.3%) ( Venuste et al., 2013 ). The same occurred to the
5 
esults of FM1 and FM2, where Wu et al. ( 2012 ) found 66% of IVPD. The
esult for CSM was similar to those found in the literature for chia seeds
77.5%) ( López et al., 2018 ); and results for GSM and GSF were similar
o grapeseeds (58–77%) reported in the literature ( Fantozzi, 1981 ). The
VPD result for the SSM was also higher than another study (74.1%)
 El-Adawy, 1995 ). 

All by-products IVPD results presented in this work are similar to the
rotein digestibility of other kinds of residues, such as black and yellow
ustard cakes (80.3% and 77.4%, respectively) ( Sarker et al., 2015 ).
hese results corroborate the potential of these oilseed by-products to
e an alternative protein source for human consumption. 

.4. Amino acid composition 

The amino acid (AA) composition of the raw samples of oilseed by-
roducts is presented in Table 4 . The total AA content shows similarity
o those results presented for protein content ( Table 1 ), which corrob-
rates the analysis’s veracity. For each amino acid evaluated, the raw
amples of oilseed by-products showed a statistical difference between
hem ( p < 0.05). However, the total essential amino acids (EAA) and
on-essential amino acids (NEAA) showed excellent results for these al-
ernative sources of protein. 

According to the Amino Acid Score, shown in Table 5 , the oilseed
eals have a good profile of EAA, although they presented some defi-

iency in some amino acids. Nevertheless, following the pattern of essen-
ial amino acids ( WHO/FAO/UNU Expert Consultation, 2007 ), the CSM
et the nutritional requirements entirely. The limiting amino acids of

he PSM were sulfur amino acids (first limiting amino acid), threonine,
nd histidine. The first limiting amino acid for FM1 and SSM was lysine,
nd for FM2, GSM and GSF were sulfur amino acids. 

The FM1, FM2, and SSM results were very close to those found for
he whole flaxseed seed and the defatted sesame seed, respectively. Also,
he CSM results in this study were higher than the chia seed after isola-
ion procedures ( Sá et al., 2020 ). However, at the present moment and
o the best of the authors’ knowledge, very few data in the literature
as reported regarding the amino acid composition in pumpkin seed,
axseed, chia seed, sesame seed, and grapeseed meals. 

. Conclusions 

Among all the oilseed by-products evaluated, CSM has the most ex-
ellent amino acid profile, since it is a full source of essential amino
cids. Other oilseeds by-products assessed are also good sources, pre-
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enting the first limiting amino acid as the lysine (SSM and FM1) or sul-
ur amino acids Met and Cys (PSM, GSM, and FM1). The trypsin inhibitor
ctivity in all by-products was similar to the value found in the primary
ources of plant proteins. Tannins presented high content only in GSM,
s expected, and, worthy of highlighting, the phytic acid concentration
as lower than most plant protein sources in the literature. Further-
ore, the protein digestibility ranged from 70 to 85%, a relatively high

alue for a plant protein source. Even so, additional processing inter-
entions can improve these IVPD values, which is an opportunity for
he food industry. 

Pumpkin seed, flaxseed, brown flaxseed, chia seed, sesame seed, and
rapeseed as by-products from the oil extraction industries are high
utritional value protein sources. They may be claimed as sustainable
rotein sources for human consumption due to three key factors: rela-
ively low content of antinutritional factors, valuable content of essential
mino acids, and good digestibility. They could become an extra income,
inimize waste disposal, and be used as a technological ingredient for

ood formulations. 
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