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A B S T R A C T   

Enteric endothelial cells are the first structure to come in contact with digested food and may suffer oxidative 
damage by innumerous exogenous factors. Although peptides derived from whey digestion have presented 
antioxidant potential, little is known regarding antioxidant pathways activation in Caco-2 cell line model. Hence, 
we evaluated the ability to form whey peptides resistant to simulated gastrointestinal digestive processes, with 
potential antioxidant activity on gastrointestinal cells and associated with sequence structure and activity. Using 
the INFOGEST method of simulated static digestion, we achieved 35.2% proteolysis, with formation of peptides 
of low molecular mass (<600 Da) evaluated by FPLC. The digestion-resistant peptides showed a high proportion 
of hydrophobic and acidic amino acids, but with average surface hydrophobicity. We identified 24 peptide se-
quences, mainly originated from β-lactoglobulin, that exhibit various bioactivities. Structurally, the sequenced 
peptides predominantly contained the amino acids lysine and valine in the N-terminal region, and tyrosine in the 
C-terminal region, which are known to exhibit antioxidant properties. The antioxidant activity of the peptide 
digests was on average twice as potent as that of the protein isolates for the same concentration, as evaluated by 
ABTS, DPPH and ORAC. Evaluation of biological activity in Caco-2 intestinal cells, stimulated with hydrogen 
peroxide, showed that they attenuated the production of reactive oxygen species and prevented GSH reduction 
and SOD activity increase. Caco-2 cells were not responsive to nitric oxide secretion. This study suggests that 
whey peptides formed during gastric digestion exhibit biological antioxidant activity, without the need for 
previously hydrolysis with exogenous enzymes for supplement application. The study’s primary contribution was 
demonstrating the antioxidant activity of whey peptides in maintaining the gastrointestinal epithelial cells, 
potentially preventing oxidative stress that affects the digestive system.   

1. Introduction 

The maintenance of the gastrointestinal epithelial cells is of funda-
mental importance for human health. Due to the continuous exposure to 
exogenous factors, the intestine is very susceptible to oxidative stress 
that results from the imbalance between the production of reactive ox-
ygen species and endogenous antioxidant systems (Qiao et al., 2022). 
These changes are common in gastrointestinal pathologies, such as colon 
cancer, Crohn’s disease, as well as immune and metabolic changes (Xu 

et al., 2017). In a redox imbalance, only the endogenous antioxidant 
defense becomes inefficient, and the intake of antioxidants from food is a 
good strategy for preventing oxidative damage (Carocho & Ferreira, 
2013; Power, Jakeman, & Fitzgerald, 2013; Valko, Izakovic, Mazur, 
Rhodes, & Telser, 2004). Hence, a demand for natural antioxidants has 
grown due to their potential beneficial effects on health allied to a lower 
risk of immunoreactivity (Sarmadi & Ismail, 2010) (see Table 1). 

Food peptides have been explored for their health benefits and 
nutritional function. Bioactive peptides are protein fragments with 
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chains of 2–20 amino acids joined by covalent bonds, which differ in 
bioactivity according to their sequence, composition, charge, and mo-
lecular weight (Sánchez & Vázquez, 2017). They are inactive within the 
original structure of the protein, but may have activity when released 
from hydrolysis, fermentation, or digestion processes. 

Peptides formed from whey protein have presented several bio-
activities, including the ability to act as antioxidant molecules, even 
showing higher antioxidant activity than synthetic compounds such as 
BHA (Corrochano, Buckin, Kelly, & Giblin, 2018; Hernández-Ledesma, 
Dávalos, Bartolomé, & Amigo, 2005). Several studies have explored 
processing methods (enzymatic, thermal, fermentative and pressure) 
that increase the antioxidant potential of whey peptides (Adjonu, Doran, 
Torley, & Agboola, 2013; Corrochano, Sariçay et al., 2019; Hernández- 
Ledesma et al., 2005; Iskandar et al., 2015; Zhidong et al., 2013; Vir-
tanen, Pihlanto, Akkanen, & Korhonen, 2007). Peptide bioactivity 
improvement can be advantageous when considering the application of 
these compounds for industrial food preservation purposes; however, 
this property is not always kept for functional food production purposes, 
which may pass through digestion (Corrochano, Sariçay et al., 2019). 

Peptides are more accessible to enzyme action compared to intact 
protein complexes and are easier to be degraded to amino acids (Cor-
rochano, Sariçay et al., 2019; Koopman et al., 2009; Moughan, Cranwell, 
& Smith, 1991). Although antioxidant activity of whey hydrolysates has 
been extensively explored, most studies have used exogenous enzymes 
for hydrolysis or chemical in vitro assays, which are not always repro-
ducible when extrapolated to complex biological systems (Amigo, 
Martínez-Maqueda, & Hernández-Ledesma, 2020; Corrochano, 2018; 
O’keeffe et al., 2017). Only peptides resistant to the digestive process are 
considered bioaccessible, being able to act on intestinal cells promoting 
antioxidant effects at the cellular level (Mann, Athira, Sharma, Kumar, & 
Sarkar, 2019). 

After peptides reach the target tissue, they must be able to interact 
with the cellular environment, be internalized, and act as proton donors 
to free radicals, chelating metal ions, or inhibiting lipid peroxidation 
(Mann et al., 2019; Zou, He, Li, Tang, & Xia, 2016). At the same time, 
they can modulate important transcriptional regulatory pathways and 
stimulate the synthesis of antioxidant cell defense compounds (Corro-
chano, Buckin et al., 2018). 

Although Caco-2 cells simulate the gastrointestinal epithelium and 
are the first cells to come into contact with food, little has been evalu-
ated regarding the antioxidant effect of whey after digestion (Piccolo-
mini et al., 2012). At this stage, whey hydrolysates were able to decrease 
the production of reactive oxygen species in myoblasts, hepatocytes, and 
neuronal cells (Corrochano, Ferraretto et al., 2019; Zhang & Shi, 2015). 
In enterocytes, there is no information regarding the possible intracel-
lular defense mechanisms activated by whey digests, such as glutathione 
production and superoxide dismutase activity. Here, we associated 
antioxidant activity with peptide sequence to better explore structur-
e–activity relationships. 

For simulate digestion we used an internationally recognized static in 
vitro digestion system, Infogest, which establishes standardized hydro-
lysis conditions, such as enzyme concentration and origin, temperature, 
pH, and reaction time, in order to minimize variability between pro-
tocols (Brodkorb et al., 2019). Several studies have applied this method, 
which results in more homogeneous results(Egger et al., 2017; Mat, Le 
Feunteun, Michon, & Souchon, 2016; Sousa, Portmann, Dubois, Recio, & 
Egger, 2020,2023). 

In this study, we characterized whey peptides resistant to the 
digestive process with respect to their molecular size, hydrophobicity, 
and amino acid content. Additionally, we evaluated their antioxidant 
capacity using chemical assays in vitro and in Caco-2 cells, which were 
stimulated with hydrogen peroxide to cause oxidative damage and 
evaluate the whey peptides antioxidant capacity in the cellular ma-
chinery of enterocytes. The sequence of peptides was identified using 
LC-MS/MS and compared to prior analyses using bioinformatics tools. 

2. Material and methods 

2.1. Sample and chemicals 

Whey protein isolate (WPI) was acquired commercially from Glanbia 
nutritionals. The following enzymes, standards, and chemicals for 
antioxidant activity techniques were obtained from Sigma Aldrich (St. 
Louis, USA): pepsin (P7000), pancreatin (p1750), bile extract (B8631), 
phthaldialdehyde or OPA (P1378), DL-dithiothreitol or DTT (S43819), 
α-Lactalbumin (L6385), Insulin (I2643), Vitamin B12 (V2876), 3,4- 
Dihydroxy-L-phenylalanine (D9628), DL-2-Aminobutyric acid or AAAB 
(162663), phenyl isothiocyanate or PITC (P1034), 2,2-Diphenyl-1-pic-
rylhydrazyl or DPPH (D9132), 2,2′-Azino-bis(3-ethylbenzothiazoline- 
6-sulfonic acid) diammonium salt or ABTS (A1888), (±)-6-Hydroxy- 
2,5,7,8-tetramethylchromane-2-carboxylic acid or Trolox (238813), 
2,2′-Azobis(2-methylpropionamidine) dihydrochloride or APPH 
(440914), Fluorescein (46955). Amino acid standards (P/N20088, 
Standard H) and L-Serine (36323) were obtained from Pierce Biotech-
nology (Massachusetts, USA). In vitro analysis with cell culture used 
Follin-ciocalteu (Dinâmica Química, Indaiatuba, São Paulo, Brazil), 
Thiazolyl Blue Tetrazolium Bromide or MTT (M5655), L-Glutathione 
reduced, or GSH (G6529), 2′,7′-dichlorofluorescin diacetate or DCF-DA 
(D6883), and bovine serum albumin (A4503) obtaining from Sigma 
Aldrich (St. Louis, USA). Deionized water and other reagents were used 
in the analytic grade. The analyzes were performed in triplicate. 

2.2. Simulated gastrointestinal digestion of whey protein isolates 

Static in vitro digestion analysis was performed according to the 
procedure recently described by Brodkorb and coworkers, as amended 
from the first version (INFOGEST 2.0) (Brodkorb et al., 2019). This 
protocol is based on human gastrointestinal digestion, where the food 
samples are subjected to sequential oral, gastric, and intestinal digestion 
with standardized physiologic parameters, such as electrolytes, en-
zymes, bile, dilution, pH, and time of digestion. Some conditions were 
adapted considering the protein samples to obtain a hydrolysate 
compatible with incubation in cell culture, such as heat inactivated 
enzyme, centrifugation and filtration. No enzyme was used to digest 
starch and fat (amylase, bile, and pancreatic lipase) since our sample 
was protein isolate. We used all simulated salivary, gastric, and intes-
tinal fluids, as well as times of incubation as indicated by the protocol. 

The activity of pepsin and pancreatin enzymes were measured prior 
to digestion process to ensure a correct final activity value. The assay 
used for measuring pancreatin and pepsin were based on those sug-
gested by the INFOGEST supplementary material protocol (Brodkorb 
et al., 2019). Pepsin presented 3743 U/mg and pancreatin 7,3 U/mg. 
These values were corrected to obtain final concentration of 2000U/mL 
of pepsin in gastric phase and 100U/mL of pancreatin in intestinal 
phase. A control sample contained all the reagents included in the 
digestion protocol, but the sample was replaced with protein free 
ingredient maltodextrin as indicated by the INFOGEST group (Sousa 
et al., 2020). 

For the oral phase, the sample was mixed with salivary fluid in the 
proportion of (1:1 w/v) with 10 mL total volume. The 0.3 M CaCl2 was 
added to salivary fluid immediately before assay and no α-amylase 
enzyme was added due to the low carbohydrate content. This mixture 
formed a swallowable bolus with saliva consistency. In a bath at 37 ◦C 
with agitation, we incubated the mixture for 2 min. In the gastric phase, 
a ratio of 1:1 w/v oral bolus was mixed with simulated gastric fluid with 
0.3 M CaCl2 freshly added, pH adjusted to 3.0 and sequentially added 
the pepsin enzyme (2000 U/mL), with volume adjusted to 20 mL. This 
mixture was placed in a bath at 37 ◦C under agitation for 2 h. For the 
intestinal phase, gastric chyme was mixed in a ratio of 1:1 w/v of in-
testinal fluid with the addition of 0.3 M CaCl2, pH adjusted to 7.0 with 5 
M NaOH and addition of 5 mL of pancreatin dilution to reach final 
concentration of 100 U/mL in the intestinal phase. The total volume was 
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adjusted to 40 mL in this stage. The intestinal mixture was placed in a 
bath at 37 ◦C for 2 h. After this time, the enzyme activity was inhibited 
by incubation of samples in a bath at 85 ◦C for 10 min. Then, it was 
placed in a cold bath and centrifuged at 7000 g for 20 min at 4 ◦C. The 
supernatant was collected and lyophilized and stored under freezing for 
further analysis. 

2.3. Physical-Chemical characterization of WPI and WPH 

Whey protein isolates (WPI) and whey protein hydrolysates (WPH) 
were characterized measuring total protein content (Nx6.38), moisture, 
degree of hydrolysis, molecular size, total amino acids, and degree of 
hydrophobicity (LATIMER, 2012). The degree of hydrolysis of the 
samples was determined by the o-phthaldehyde (OPA) method 
described by Adler-Nissen (1986). The degree of hydrolysis (DH) was 
calculated according to Eq. 

DH(%) = B × Nb ×
1
α ×

1
MP

×
1

htot
× 100  

where: B = base consumption (mL); Nb = normality of the base; α =
average degree of dissociation of the α-NH groups; MP = mass of protein 
(g); and htot = total number of peptide bonds in the protein substrate 
(meqv/ g protein), whey protein htot = 8.8. 

2.4. Molecular size by size exclusion chromatography (FPLC) 

WPI and WPH samples were analyzed using Fast Protein Liquid 
Chromatograph (Akta Pure Chromatograph, GE Healthcare) by the size 
exclusion method (SE-FPLC) with gel columns (Superdex 200 and 
Superdex 30 models) and UV detector (280 nm). Samples (5 mg protein/ 
mL) and standards (1 mg/mL) were diluted in 25 mM sodium phosphate 
buffer (pH 7.4 with 150 mM NaCl) and run at a flow of 0.5 mL/min for 
120 min. The molecular weight standard α-Lactalbumin (14178 Da), 
Insulin (5807.6 Da), Vitamin B12 (1355.4 Da), L-β-4-Dihydrox-
yphenylanine (197.2 Da) were used at a 1 mg/mL concentration (Sis-
coneto Bisinotto et al., 2021; Vander Heyden, Popovici, & 
Schoenmakers, 2002). 

2.5. Total amino acids by High-Performance liquid chromatography 
(HPLC) 

Total amino acids were obtained through acid hydrolysis, using a 6 N 
HCl hydrochloric acid and phenol solution, for 22 h in a digester block at 
120 ◦C. Next, a pre-column reaction was carried out with phenyl iso-
thiocyanate (PITC). Mobile phases A and B consist of sodium acetate, 
acetonitrile, ultra-pure water, and disodium EDTA. Quantitation was 
performed using a Shimadzu liquid chromatograph and a diode array 
detector (DAD) (Shimadzu, Brazil), and a C18 Luna-Phenomenex 
reversed-phase column (4.6 mm × 250 mm; particle size 5 μm) (Phe-
nomenex Inc., Torrance, USA). The quantification was performed by 
comparing it with the amino acid standard and the internal standard 
α-aminobutyric acid (AAAB) at a wavelength of 254 nm (Hagen, Frost, & 
Augustin, 1989; White, Hart, & Fry, 1986). Tryptophan was not 
analyzed. 

2.6. Hydrophobicity profile by chromatography 

Reverse-phase high-performance chromatography (RP-HPLC) using 
a C18 column (4,6mm × 250 mm; particle size 5 μm/ Phenomenex/ 
Torrance, California, USA) and diode array detector (DAD) was used 
(Shimadzu, Brazil). The technique was based on previous work from our 
group (Caetano-Silva et al., 2017). The samples were diluted in water (3 
and 1 mg protein/mL for WPH and WPI respectively), and 50 μl was 
injected. The solvent A (0,04% de TFA in ultrapure water) and solvent B 
(0,03% TFA in acetonitrile) was eluted with following gradient: 0 a 70% 

solvent B until 40 min, 100% solvent B in 45 min, and return 0% solvent 
B in 50 min. The flow rate was 1 mL/min at 25 ◦C/ 60 min. Samples were 
diluted in solvent A, filtered in polytetrafluoroethylene hydrophilic 
membrane (PTFE; 0,45 μm), and taken in the ultrasonic bath for 10 min 
after injection. The chromatograms obtained to WPI and WPH were 
divided into three zones, classifying the peptides as (I) Low hydropho-
bicity zone, with retention time from 0 to 14 min and elution gradient of 
25%; (II) medium hydrophobicity zone with B solution gradient the up 
to 50% (17 and 29 min) and, (III) high hydrophobicity zone with B so-
lution gradient over 50% (29 and 40 min) (Legay, Popineau, Bérot, & 
Guéguen, 1997). 

2.7. LC/MS/MS analysis (Nano-coupled liquid chromatography 
QExactive mass) 

Samples were resuspended in LC/MS water with 0.1% formic acid 
and quantified with Qubit Protein Assay. Chromatography was per-
formed on a PicoChip source (Model 1PCH-550; 75 µm ReproSil Pur C18 
3 µm silica matrix; New Objective, USA) at a continuous flow rate of 
0.300 µl/min. A 1ug of sample was injected into a 2 cm Acclaim PepMap 
100 trap (75 µm ID, C18 3 µm; Thermo Fisher Scientific) pre-column. 
The sample was then separated using a 2–40% mobile phase B 
gradient for 120 min, followed by 10 min in 80% mobile phase B, and re- 
equilibration of the column for 10 min in 2% mobile phase B. The 
chromatography mobile phases included: mobile phase A water/0.1% 
formic acid, and phase B acetonitrile/0.1% formic acid. Mass spectra 
were acquired on a Q Exactive mass spectrometer (Thermo Fisher Sci-
entific) by the DDA (data dependent acquisition, FullMS/MS) method 
with top 10 count selection. The precursor ion search was conducted 
with 300–1,750 m/z at 70,000 resolution. An isolation window of 2 m/z 
was selected, NCE collision energy 15 and 30, followed by MS/MS 
acquisition at 17,500 resolution. Automatic gain control (AGC) target of 
1e 4 and maximum injection time of 100 ms. Loads 1 and greater than 5 
were excluded. Dynamic exclusion time of 30 s was used. Samples were 
run in duplicate. Spectra analysis was performed with PatternLab for 
Proteomics (Carvalho et al., 2015) using the Bos taurus database from 
the UNIPROT database (https://www.uniprot.org). The search for de 
novo peptides was performed with the NOVOR software (Ma, 2015) 
(available at https://novor.cloud/), using default settings and the Bos 
taurus database as a reference. The peptides found were cross-referenced 
with the Milk Bioactive Peptide Database (Nielsen, Beverly, Qu, & 
Dallas, 2017). Only peptides with 100% similarity to the database were 
considered. The sequencing results were cross-checked with the MBPDB 
and BIOPEP-UWM databases. The hydrophobicity of the sequenced 
peptides was calculated based on amino acid side chain by peptide 
sequence length using the open access web-based bioinformatic tools 
(Acquah, Stefano, & Udenigwe, 2018). To show the frequency of each 
amino acid in each position, a heat map graph was constructed based on 
iceLogo, a free, open-source Java application for analyzing and visual-
izing consensus patterns in aligned peptide sequences (Colaert, Helsens, 
Martens, Vandekerckhove, & Gevaert, 2009). The online software 
(https://iomics.ugent.be/icelogoserver/) was used. 

2.8. Antioxidant assay -ABTS radical scavenging method 

The antioxidant assay measured the ability of whey peptides to 
scavenge the ABTS, as described by (Dryáková, Pihlanto, Marnila, 
Čurda, & Korhonen, 2010). Briefly, 2,2′-azino-bis(3-ethylbenzothiazo-
line-6-sulfonic acid) radical solution (ABTS + ) was performed by mix-
ing potassium persulfate in aqueous solution 2.45 mM and ABTS 7 mM. 
The mixture was kept in the dark for 16 h and its absorbance was 
adjusted to 0.7 ± 0.02 at 734 nm using a UV–Vis spectrophotometer 
prior to analysis. An aliquot of 10 μl of the sample (1, 5, 10, 20 mg/mL) 
was placed in a microplate well followed by the addition of 190 μl of 
ABTS working solution (Abs 0.7 ± 0.02) to react for 6 min. The absor-
bance was then measured at 730 nm on the microplate UV–Vis Reader 
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Synergy (Varioskan Lux, Thermofisher). A Trolox standard curve in 75 
mM phosphate buffer and pH 7.4 was used to express the ABTS values. 
The volume of 240 μl of sodium phosphate buffer (75 mM, pH 7.4) was 
subtracted from the absorbances of the samples and standard by the 
analytical curve. The final results were expressed in μmol Trolox 
equivalent/g of sample, or by the percentage of antioxidant activity 
(AA), calculated and expressed according to the following equation: AA 
(%)=((Blank Abs-(Sample Abs)/(Blank Abs))x100). 

2.9. Antioxidant assay - free radical scavenging activity of DPPH. 

The free radical scavenging capacity of the test samples were esti-
mated following (Pires, Torres, dos Santos, & Chow, 2017), with minor 
modifications. An 80 µM solution of 2,2-diphenyl-1-picrylhydrazyl was 
prepared in a dark bottle using methanol. It was then mixed with serially 
diluted concentrations of sample (WPI and WPH at 1, 5, 10, 20 mg/mL) 
or standard (3–100 uM). The mixture was shaken and incubated at room 
temperature for 30 min, centrifuge 5000 g for 5 min at − 4◦C. A volume 
of 200 μl was dispensed into a 96-well microplate and read at an 
absorbance of 517 nM. The scavenging activity of the tested samples was 
extrapolated into the percentage DPPH inhibitory using the following 
equation: AA(%) = ((Blank Abs-(Sample Abs)/(Blank Abs)) × 100). 

2.10. Antioxidant assay - oxygen radical absorption capacity-ORAC 

ORAC assay measures the ability of an antioxidant to reduce the 
peroxyl radical (ROO-) generated by the thermal degradation of (2,2′- 
azobis(2-amidinopropane) dihydrochloride) (AAPH) and preserve the 
fluorescein molecule against the action of the peroxyl radical (Corro-
chano, Sariçay et al., 2019). Samples (WPH and WPI at 0.01; 0.25 and 1 
mg/ml) and Trolox standard curve (5 to 80 µM) were diluted in 75 mM 
potassium phosphate buffer (pH 7.4). In a microplate, 20 μl of sample or 
standard, 120 μl of 0.17 µM fluorescein solution, 60 μl 40 mM AAPH 
solution Fluorescence were added and monitored during 2 h, with 90- 
second intervals, at 485 nm wavelength excitation and emission of 
520 nm, using a microplate reader (Varioskan Lux, Thermofisher, 
Singapore). The samples and protection standard (AUCnet) were 
calculated by the difference between the area under the fluorescence 
decay curve of samples/standard (AUC sample/standard) and the area 
under the fluorescence decay curve without sample or addition of Trolox 
(white AUC). The results were expressed in μmol equivalent of Trolox/g 
of sample, in triplicate. 

2.11. Caco-2 cell culture 

Human lineage of adenocarcinoma derived from the epithelium 
(Caco-2) was kindly donated from Dra Juliana Macedo, professor of the 
Faculty of Food Engineering at UNICAMP (Campinas, São Paulo, Brazil). 
The cells were cultivated in a bottle of 25 or 75 cm2, using Dulbecco’s 
Modified Eagle Medium (DMEM), supplemented with 10% fetal bovine 
serum, 8.4 mM Hepes, 23.8 mM NaHCO3, 1% sodium pyruvate, L- 
glutamine, 1% non-essential amino acids, 1% penicillin and strepto-
mycin. Cells were incubated at 37 ◦C and 5% CO2 in a water-saturated 
atmosphere and the culture medium was replaced every two days. After 
growth and reaching 90% confluency, cells were trypsinized with 0.25% 
(v/v) trypsin-EDTA and seeded in 24-well plates (with a cell density of 
10 × 104 cells/well) or 96-well plates (2 × 104 cells/well), depending on 
the analysis. 

2.12. Cells treatment design 

Cells were pretreated for 1 h with WPH at concentrations (0; 0.01; 
0.25 and 1 mg/mL) or with the Infogest control (C). Cells were then 
stimulated with hydrogen peroxide at a concentration of 1 mM for 3 
more hours. Treatment time was defined at 4 h (1 h of pretreatment and 
3 h of stimulus) based on the physiological time of in vitro digestion. 

2.13. Evaluation of cell viability 

Cell viability was based on the cellular uptake of 3-(4,5-dime-
thylthiazol-2yl)-2,5-diphenyl tetrazoline bromide or MTT and the effect 
of metabolic cell activity that results in the conversion of MTT to purple- 
stained insoluble crystalline formazan (Crespo et al., 2012). MTT 0.05 
mg/ml was incubated 30 min before the end of treatment. Then, the 
medium was removed, and dimethylsulfoxide (DMSO) was added to 
dissolve the crystals under stirring. The absorbance reading at wave-
lengths of 560 nm and 650 nm in a microplate reader (Varioskan Lux, 
Thermofisher, Singapore). The reduction of MTT was calculated as (abs 
at 560 nm) - (abs at 650 nm) and expressed as a percentage of basal. 

2.14. Generation of reactive oxygen species (ROS) 

Reactive oxygen species (ROS) production was evaluated by DCF-Da 
assay after cell treatment (Wan, Liu, Yu, Sun, & Li, 2015). DCF-DA is 
absorbed by passive diffusion by cells and cleaved by the action of 
intracellular esterases forming DCFH. DCFH is oxidized to dichloro-
fluorescein (DCF) by radicals. Cells were seeded and treated in a 96-well 
black plate with a density of 2x104 cells/well. DCF-DA at 20 µM was 
incubated 30 min before the end of treatment with WPH at different 
concentrations (0; 0.01; 0.25 and 1 mg/mL). Then, cells were washed 
with PBS twice and a volume of 100 µl of 1 mM hydrogen peroxide 
medium or basal medium was incubated; the microplate was immedi-
ately placed on microplate reader (Varioskan Lux, Thermofisher, 
Singapore) for fluorescence reading at a wavelength of 485 nm excita-
tion and 520 nm emission, in kinetic time, with readings every 5 min for 
a total time of 2 h at 37 ◦C. The result was expressed as arbitrary fluo-
rescence unit per microgram of protein (UF/mg protein). 

2.15. Glutathione reduced content (GSH) 

This assay detects reduced glutathione levels according to the 
method of (Browne & Armstrong, 1998). After treatment, cells were 
scraped from wells, resuspended, and lysed in sodium-phosphate buffer 
(0.1 M, pH 8.0) containing 5 mM EDTA. Proteins were precipitated in 
MPA-PR solution (Metaphosphoric acid and NaCl) and centrifuged at 
1000g for 10 min at 4 ◦C. The supernatant was pipetted in triplicate into 
a 96-well black plate. The standard curve was performed with a reduced 
glutathione standard (G-6529, Sigma Aldrich, St. Louis, USA) in the 
concentration range of 0–500 μM. The 1 mg/mL o-phthaldehyde (P- 
1378, Sigma Aldrich, St. Louis, USA) is the fluorescent compound of the 
reaction after its addition to the plate was protected from light for 15 
min before reading. The fluorescence reading in the excitation param-
eters at 350 nm and emission at 420 nm was performed in a microplate 
reader (Varioskan Lux, Thermofisher, Singapore). The readings were 
discounted from the blank, and the result was expressed in umolGSH/ 
mg protein. 

2.16. SOD activity 

The SOD activity of the previously treated Caco-2 cells was evaluated 
using the Cayman kit and the instructions according to the manufacturer 
were followed. The intracellular content of SOD was obtained by lysis 
each well (24 well plates) in 300 µl of kit indicated solution. 

2.17. Nitric oxide production (NO) 

Oxide nitric production was evaluated after treatment, following 
(Soliman & Mazzio, 1998). Griess reagent contains 1 part sulfanilamide 
(0.75%) and 0.5 N HCl to 1 part N-(1-naphthyl) ethylenediamine 
dihydrochloride (0.75%) in water. After treatment in cell culture, the 
supernatant was collected and mixed with the Griess reagent pipetted 
triplicate into the 96-well plate. Then, plates were incubated for 10 min 
in the dark at 25 ◦C, and the absorption was read at 550 nm on a 
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microplate reader (Varioskan Lux, Thermofisher, Singapore). The stan-
dard curve used was sodium nitrite (Synth, São Paulo, Brazil). Data were 
expressed as nM nitrite/mg protein/h. 

2.18. Soluble proteins 

Most of the techniques used in cell culture were corrected for soluble 
protein (µg/µL) by the Lowry method using bovine albumin (Peterson, 
1979). The standard used was bovine albumin. The amount of protein 
was expressed in µg/µL. 

2.19. Statistical analysis 

Statistical analysis was conducted using SPSS 16.0 software (SPSS 
Inc., Chicago IL). ANOVA followed by Duncan’s post-test was performed 
to evaluate differences between the groups. The mean ± standard de-
viation was used to represent data from each in vitro experiment, which 
was repeated at least five times. Statistical significance was determined 
as p < 0.05. 

3. Results and discussion 

3.1. Degree of hydrolysis and molecular weight of digested peptides 

The effectiveness of the digestion using the Infogest method was 
evaluated by the degree of hydrolysis, and the molecular size of the 
peptides formed. The whey hydrolysate (WPH) obtained a degree of 
hydrolysis of 35.2 ± 2.4 g/100 g, similar to other results from the 
literature (values of 31, 49 and 52%) for with similar matrix (Ariëns 
et al., 2021; Mat et al., 2016). 

The molecular size of WPH was compared with whey isolate (WPI) 
by FPLC analysis (Fig. 1). Regarding WPI, we could observe that 100% of 
the sample corresponds to fractions larger than 7KDa, probably attrib-
uted to the proteins α-lactalbumin (14 KDa) and β-lactoglobulin (18.4 
KDa), major constituents of whey. While the molecular mass distribution 
of WPH shows a contrasting profile, where most of the molecular weight 
fractions are below 0.6 KDa (Fig. 1 A and B). These data confirm the high 

proteolysis of proteins by enzymes present in the digestive process, 
resulting in low molecular size peptides. Studies in computer-controlled 
dynamic in vitro digestion system show that some whey proteins were 
resistant to gastric compartments; after intestinal phase, however, all 
the major proteins were hydrolysates into molecular sizes smaller than 
2kDA, suggesting a high susceptibility to pancreatic enzymes (Nabil, 
Gauthier, Drouin, Poubelle, & Pouliot, 2011). Peptides of lower mo-
lecular mass are more resistant to gastric digestion, thus increasing their 
bioaccessibility for absorption (Sarmadi & Ismail, 2010). 

3.2. Amino acid composition and hydrophobicity profile 

The function and bioactivity of peptides are related to their amino 
acid composition and hydrophobicity. As expected, the amino acid 
composition did not change after the hydrolysis process (Table 1). The 
most abundant amino acid group in our sample was Aliphatics/ 
Nonpolar (30.1%), followed by Acids (28.9%), Basics (13.4%), Hy-
droxylated (11.8%), Iminoacids (5.8%), Aromatics(5.7%), and Sul-
phurized (4.3%). 

Leucine (10 mg/100 g), valine (6.3 mg/100 g), and isoleucine (6.4 
mg/100 g) stood out among the aliphatic amino acids. These amino 
acids have the highest hydrophobicity score within a hydrophobicity 
scale of 20 proteinogenic amino acids (Acquah et al., 2018; Kyte & 
Doolittle, 1982). Peptides with high levels of hydrophobic amino acids, 
particularly leucine, have been reported to exhibit enhanced antioxidant 
activity (Zou et al., 2016). The high hydrophobicity of peptides likely 
contributes to their permeability across the cell plasma membrane, 
facilitating their uptake. Indeed, the high hydrophobicity of peptide 
fraction of casein positively affected its bioavailability (Xie, Wang, 
Jiang, Liu, & Li, 2015). 

According to the literature, casein peptides have shown that acidic 
amino acids in peptide sequences (highly present in our sample) 
contribute positively to digestive stability in simulated gastric and in-
testinal digestion models (Jing Ao, 2013). Aspartic acid and glutamic 
acid, along with glutamine, are considered the major energy substrates 
in the diet for enterocytes. These amino acids assist in maintaining the 
integrity of the intestinal barrier, indirectly preventing the entry of 

Fig. 1. Molecular size of whey isolates (WPI) and whey hydrolysate (WPH). (A) Chromatographic profile of molecular mass distribution of WPI and WPH; (B) 
Retention times of internal standards (C) Molecular mass ranges in percentage. 

J.S. de Espindola et al.                                                                                                                                                                                                                        



Food Research International 173 (2023) 113291

6

microorganisms into the systemic circulation (P. Li, Yin, Li, Kim, & Wu, 
2007; G. Wu & Morris, 1998). These negatively charged amino acids 
have demonstrated the ability to chelate free radicals due to the pres-
ence of excess electrons in peptides derived from colza (He et al., 2013). 
In addition, glutamic acid is an immediate precursor in the synthesis of 
glutathione, which plays an important role in eliminating oxidative 
compounds and regulating the immune response (Wu, Bazer, Cudd, 
Meininger, & Spencer, 2004). 

Fig. 2 shows the hydrophobicity analyses of WPI and WPH at two 
wavelengths, with the 214 nm absorbance typically used to estimate the 
amount of peptides present in the hydrolysates, while the 280 nm 

absorbance is more related to the presence of aromatic amino acids 
(Asher, Ludwig, & Johnson, 1986; Kuipers & Gruppen, 2007). It is 
observed that the intensity of the peaks at 280 are lower than 214 nm, 
indicating a lower exposure of aromatic amino acids, corroborating with 
our amino acid composition analysis. 

Fig. 2a, which refers to WPI, shows two peaks of higher intensity in 
zone II that correspond to α-lactalbumin and β-lactoglobulin(Caetano- 
Silva et al., 2017; Corrochano, Sariçay et al., 2019). Regarding the 
chromatograms of WPH (Fig. 2B), several peaks resulting from the hy-
drolysis process are distributed in the low and medium hydrophobicity 
zones. 

Although both samples had a good proportion of amino acids clas-
sified within the hydrophobic group (Table 2), we observed a reduction 
in overall hydrophobicity after the hydrolysis process. This analysis 
evaluates the surface hydrophobicity of peptides, and not all amino 
acids are exposed in solution. Previous works observed a reduction of 
hydrophobicity after the hydrolysis process of whey (Melnikova, Bog-
danova, & Koshevarova, 2022; Schröder, Berton-Carabin, Venema, & 
Cornacchia, 2017). The reduction in hydrophobicity could be attributed 
to a structural change of the peptides, leading to an increase in charges 
in the C- and N-terminal regions, after cleavage of the peptides between 
adjacent amino acids (Schröder et al., 2017). 

3.3. Digestion-resistant peptide sequences identification 

Peptides released after the digestion process were identified by 
HPLC-ESI-MS/MS, with a detection window of 300 to 1750 m/z. A 
number of 126 sequences were identified, however, after bioinformatics 
analysis, only 24 peptides exhibited 100% similarity to the databases 
(Table 2). We identified 12 peptides derived from β-LG protein; 11 
peptides from β-casein and 1 from α-LA. Prior studies on whey hydro-
lysis have identified sequences derived from casein, even though this 
protein is mainly present in milk (Corrochano, Buckin et al., 2018). 
Interestingly, four peptide sequences (LIVTQTMK, IDALNENK, 
RELKDLK, ALPMHIR) were previously detected after hydrolysis with 
digestive enzymes originating from β-Lg and α-La and related to prolif-
erative effect (Jacquot, Gauthier, Drouin, & Boutin, 2010). 

Most of the identified peptides had between 6 and 13 amino acid 

Table 1 
Amino acid profile and concentration (g/100 g protein) of WPI and WPH.  

Amino acids (AA) WPI WPH 

Aliphatic/Nonpolar 
Ala 5.0 ± 0.01 5.0 ± 0.01 
Gly 1.6 ± 0.01 2.6 ± 0.01 
Leu 10.6 ± 0.02 10.0 ± 0.02 
Val 6.2 ± 0.01 6.3 ± 0.01 
Ile 6.5 ± 0.01 6.4 ± 0.01 
Aromatics 
Phe 3.0 ± 0.01 2.9 ± 0.01 
Tyr 2.9 ± 0.01 2.7 ± 0.01 
Hydroxylated 
Ser 4.9 ± 0.01 5.0 ± 0.01 
Thr 7.2 ± 0.01 6.5 ± 0.06 
Sulphurized 
Cys 1.6 ± 0.06 1.4 ± 0.01 
Met 2.9 ± 0.01 2.7 ± 0.01 
Imino acids 
Pro 5.8 ± 0.02 5.8 ± 0.01 
Acids 
Glu 17.9 ± 0.01 17.6 ± 0.03 
Asp 10.9 ± 0.01 11.4 ± 0.02 
Basics 
Arg 2.1 ± 0.01 2.7 ± 0.01 
His 1.6 ± 0.01 1.7 ± 0.01 
Lys 9.4 ± 0.01 9.2 ± 0.01 

Note: A = Ala; C = Cys; D = Asp; E = Glu; F = Phe; G = Gly;H = His; I = Ile; K =
Lys; L = Leu;M = Met; N = Asn; P = Pro; Q = Gln; R = Arg; S = Ser; T = Tre; V =
Val;W = Thr; Y = Tyr. 

Fig. 2. WPH presented peptides with medium hydrophobicity. Chromatograms relating hydrophobicity zones of peptides of WPI (A) and WPH (B) obtained at 
214 and 280 nm, respectively. The hydrophobicity zones are related to retention time and mobile phase concentration where: 0–25% Mobile Phase B corresponds to 
low hydrophobicity (I), 25–50% medium hydrophobicity (II), 50–100% high hydrophobicity (III). 
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residues and a size between 0.6 and 1.5 kDa, which is consistent with the 
data found in the molecular size analysis using FPLC (refer to Fig. 1). 
Several studies have linked low molecular size peptides with improved 
antioxidant activity (Zou et al., 2016). A study using different sizes of 
whey hydrolysates (5 kDa, 1 kDa, and 0.6 kDa) showed that smaller 
peptides had greater antioxidant activity, evaluated by ORAC (Estévez 
et al., 2020; O’keeffe et al., 2017; O’Loughlin, Murray, FitzGerald, 
Brodkorb, & Kelly, 2014). 

The majority of peptides had intermediate hydrophobicity, ranging 
from 30 to 50%, which is consistent with the hydrophobicity analysis 
using HPLC. The most hydrophobic peptides found in our sample (>42% 
hydrophobicity) had a higher proportion of leucine and valine, mainly 
in the N-terminal region, as show in the heating map (Fig. 3A), which is 
considered significant for antioxidant potential (Bougatef et al., 2010; 
Chen, Muramoto, & Yamauchi, 1995; Zou et al., 2016). QSAR modeling 
showed that the steric properties of amino acids in the N- and C-terminal 
region played a vital role in antioxidant activity (Tian et al., 2015). 
Furthermore, hydrophobic amino acid residues (such as leucine and 
valine) in the N-terminal region increased the interaction between 
peptides and fatty acids, which could lead to greater penetrability in the 
cellular lipid bilayer (Li, Li, He, & Qian, 2011). 

A high proportion of the amino acid lysine and isoleucine was found 
in the C-terminal region of hydrophobic peptides (Fig. 3C). Isoleucine 
has an important antioxidant role as branched chain amino acids, such 
as leucine and valine. Isoleucine has presented an important protection 
against oxidative damage in mammalian epithelial cells, improving the 
deficit in peroxisome transport (Wu et al., 2022). Dietary lysine levels 
have improved antioxidant capacity in intestinal barrier function by 
upregulating Nrf2, and the expression of antioxidant enzyme genes 

(Zhao et al., 2023). Proline residue was presented in most sequenced 
peptides (Fig. 3). In fact, high content of Pro is characteristic of casein 
derived peptides, contributing to their open structure, which may in-
crease the availability of the amino acid residues to act as antioxidants 
(Sabeena Farvin, Baron, Nielsen, Otte, & Jacobsen, 2010; Zou et al., 
2016). 

As shown in Table 2 the sequences identified in our sample were 
previously identified in other studies for other biofunctionalities, mainly 
related to ACE and DPP-IV inhibitory action, as well as hypercholes-
terolemic function. Three sequences from our sample (YPFPGPIPN, 
VYPFPGPIPN, YVEELKPTPEGDL) were associated with antioxidant ac-
tivity in previous chemical in vitro analyses (Basilicata et al., 2018; 
FitzGerald, Cermeño, Khalesi, Kleekayai, & Amigo-Benavent, 2020; 
Tonolo et al., 2020). Interestingly, the β-LB-derived sequence 
YVEELKPTPEGDL inhibited ROS production in intestinal crypt cells 
(IEC) and stimulated the translocation of nuclear factor (erythroid- 
derived 2)-like 2 (Nrf2) cytroprotectant, indicating a potential of 
intracellular redox mechanisms (Basilicata et al., 2018). 

3.4. Chemical antioxidant capacity in vitro (DPPH, ABTS and ORAC) 

The antioxidant activity of the gastric digestion resistant peptides 
was assessed using chemical in vitro assays (ABTS, DPPH and ORAC) and 
compared with the whey protein isolate (see Table 3). Very low or un-
detectable levels of antioxidant activity were observed in the Infogest 
control sample, confirming that the fluids used in the in vitro digestion 
process did not affect the antioxidant capacity of the sample. Both 
samples showed concentration-dependent antioxidant activity in the 
assays. Nevertheless, the antioxidant activity of the digested peptides 

Table 2 
Peptide identification of WPH based on de novo and database comparison strategy.  

Protein Source Peptide MW average 
(Da) 

Sequence 
length 

Hydrophobicity 
(%) 

Function related Manuscript 

Beta 
lactoglobulin  

ALPMHIR 837.06 7 57.14 Proliferative effect (Jacquot et al., 2010) 
Release of endothelin-1 by 
endothelial cells 

(Maes et al., 2004) 

ACE-inhibition (Yamada et al., 2015) 
DAQSAPLRV 956.07 9 44.44 DPP-IV Inhibition (Lacroix & Li-Chan, 2012) 
GLDIQK 672.78 6 33.33 Hypocholesterolemic (Nagaoka et al., 2001) 

DPP-IV Inhibition (Pihlanto-Leppälä et al., 1998) 
IDALNENK 916.01 8 37.5 Proliferative effect (Jacquot et al., 2010) 
LIVTQTMK 933.18 8 50 Proliferative effect (Jacquot et al., 2010) 
LKPTPEGDL 969.11 9 22.2 DPP-IV Inhibition (Lacroix et al., 2017) 
LKPTPEGDLE 1098.22 10 20.0 DPP-IV Inhibition (Lacroix & Li-Chan, 2014) 
TPEVDDEALEK 1245.31 11 27.27 Antibacterial 

DPP-IV Inhibition 
(Power et al., 2014; Silveira 
et al., 2013) 

VLDTDYK 852.47 7 42.86 DPP-IV Inhibition (Pihlanto-Leppälä et al., 2000) 
VLVLDTDYK 1065.24 9 55.56 DPP-IV Inhibition (Silveira et al., 2013) 
VYVEELKPTPEGDLEILLQK 2313.69 20 40.0 Hypocholesterolemic (Suwal et al., 2017) 
YVEELKPTPEGDL 1489.65 13 30.77 Antioxidant (Basilicata et al., 2018) 

Beta-casein  EMPFPK 747.91 6 33.33 Bradykinin-Potentiating (Perpetuo et al., 2003) 
ACE-inhibition (Plaisancié et al., 2015) 

HQPHQPLPPT 1151.30 10 10.0 ACE-inhibition (Adams et al., 2020) 
LHLPLP 688.87 6 50.0 ACE-inhibition (Quirós et al., 2008) 
LNVPGEIVE 969.11 9 44.44 ACE-inhibition (Gobbetti et al., 2000) 
LVYPFPGPI 1002.23 9 55.56 ACE-inhibition (Otte et al., 2007) 
NIPPLTQTPV 1079.27 10 30.0 ACE-inhibition (Gobbetti et al., 2000) 
PFPGPIPN 837.98 8 25.0 ACE-inhibition (Lin et al., 2017) 
SLPQNIPPL 978.16 9 33.33 DPP-IV Inhibition (Rendón-Rosales et al., 2022) 
VYPFPGPI 889.07 8 50.0 Prolyl endopeptidase-inhibitory/ 

PEP-inhibitory 
(Asano et al., 1991) 

VYPFPGPIPN 1100.29 10 40.0 Antioxidant (Tonolo et al., 2020) 
ACE-inhibition (Eisele et al., 2013) 

YPFPGPIPN 1001.16 9 33.33 DPP-IV Inhibition (Uenishi et al., 2012) 
ACE-inhibition (Saito et al., 2000) 
Antioxidant (Amigo et al., 2020) 

Alpha- 
lactalbumin 

RELKDLK 901.08 7 28.57 Proliferative effect (Jacquot et al., 2010) 

Note: A = Ala; C = Cys; D = Asp; E = Glu; F = Phe; G = Gly;H = His; I = Ile; K = Lys; L = Leu;M = Met; N = Asn; P = Pro; Q = Gln; R = Arg; S = Ser; T = Tre; V = Val;W 
= Thr; Y = Tyr. 
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was approximately two times as that of the whey protein isolate in the 
three assays tested, confirming that protein breakdown and peptide 
formation enhance the antioxidant capacity of the sample by exposing 
hydrogen-donor amino acids previously hidden in protein structure. 

A study observed an increase in the antioxidant activity of whey 
peptide isolate after digestion by ABTS, FRAP and ORAC method (Cor-
rochano, Sariçay et al., 2019), further supporting our results. This study 
determined the antioxidant bioactivity of peptides formed by exogenous 
enzymes was not maintained after the digestive process, indicating some 
peptides must be degraded. In opposition, other studies have shown 
higher antioxidant activity of hydrolysates after gastrointestinal diges-
tion (Wang, Han, Tan, Hong, & Luo, 2023). From a physiological 
perspective, the fortification of foods with antioxidant peptides may be 
dependent on peptide resistance during digestion process. 

3.5. Treatment with WPH on Caco-2 cells 

Our study evaluated the antioxidant capacity of the digestion- 
resistant peptides in Caco-2 cell cultures under oxidative stimulation 
by hydrogen peroxide (H2O2). Due to the higher antioxidant activity of 
hydrolysates in previous results, only these samples were evaluated in 
cell culture. To determine safe concentrations of WPH and H2O2 that 
would not compromise cell viability, a curve with different concentra-
tions was performed. Safe concentrations for WPH were in the range of 
1–0.01 mg/mL, while for H2O2 they were below 1 mM (Fig. 4A). 

Stimulation with H2O2 1 mM induced an increase in reactive oxygen 
species (ROS) production which was partially prevented by WPH in a 
dose dependent manner (Fig. 4B). Moreover, the oxidation induced by 
H2O2 reduced glutathione content, which was reversed by pretreatment 
with WPH (Fig. 5A). Oxidation stimulus induced by H2O2 increased 

superoxide dismutase (SOD) activity, which was prevented by WPH 
(Fig. 5B). Nitric oxide secretion levels were not affected in the stimu-
lated Caco-2 cells (Fig. 5C). 

Like our results, digested fractions of β-LG and α-LA in HT-22 
neuronal cells and in whey-based beverage and WPI pressurized in 
Caco-2 intestinal cells reduced ROS (Corrochano, Arranz et al., 2018; 
García-Casas et al., 2022). The hydrolysates prevented the increase of 
ROS and increased the content of glutathione, a major cellular antioxi-
dant. This suggests two possible mechanisms of action of whey peptides: 
(I) peptides serving as hydrogen or electron donors for radicals, saving 
glutathione itself for its antioxidant function and/or (II) peptides acting 
on oxidative pathways, promoting increased cellular glutathione syn-
thesis (Corrochano, Buckin et al., 2018). A previous study observed that 
whey digests increased the expression of glutathione peroxidase at the 
mRNA level in Caco-2 cells, suggesting that these peptides may play an 
important role at the transcriptional level (Corrochano, Buckin et al., 
2018). Amino acid analysis revealed that WPH is rich in glutamate, a 
major cofactor for glutathione synthesis. An increase in glutathione 
levels induced by hydrolyzed whey concentrates (with exogenous en-
zymes) was observed in studies with human umbilical vein endothelial 
cells (O’Keeffe & FitzGerald, 2014), with hepatocytes (Pyo, Yang, Chun, 
Oh, & Lee, 2016), and with whole protein in myoblasts (Kerasioti et al., 
2014). 

In contrast to our result, previous studies have shown that WPH 
protected myoblast and fibroblast cells from oxidative stimulus by 
increasing SOD activity (Kong, Peng, Xiong, & Zhao, 2012; Xu, Liu, Xu, 
& Kong, 2011). Since these assessments were performed over a longer 
incubation period of 24 h, different levels of SOD activity may also be 
related to an increase in enzyme expression. In our acute treatment (4 
h), an increase in SOD activity after oxidative stimulus could represent a 

Fig. 3. Heat map graph of most hydrophobic sequences (greater than40%) using N-terminal alignment (A) and C-terminal alignment (B). Only significant 
amino acids (P < 0.05) are shown or colored in the heatmap. The difference in the frequency of an amino acid is expressed as the size of letters or color intensity. The 
P value of each amino acid at every position was calculated by testing the experimental frequency against the frequency of each amino acid in the reference set. 

J.S. de Espindola et al.                                                                                                                                                                                                                        



Food Research International 173 (2023) 113291

9

cell response to attempt for a reduction of oxidative stress, while 

coincubation with WPH may serve as an external antioxidant source, 
preventing the increase in SOD activity. 

4. Conclusions 

Hydrolysis of whey proteins during gastrointestinal digestion in vitro 
was able to produce peptides activating antioxidant pathways in human 
enterocytes and colonocytes model. The peptide digests were able to 
attenuate reactive oxygen species production, prevent GSH reduction 
and SOD consumption in Caco-2 cells stimulated with hydrogen 
peroxide. Although the peptides showed mostly hydrophobic and acidic 
amino acids in their chain, surface hydrophobicity was average. The 
identified peptides must be resistant to digestion, although some of them 
may be the result of incomplete digestion due to time constraints of the 

Table 3 
WPH present antioxidant activity by ABTS, DPPH and ORAC assay.  

ABTS % of antioxidant activity 

Concentration mg/mL WPI WPH 

1 4.8 ± 5.9a 60.0 ± 25c,d 

5 19.6 ± 7.3b 89.6 ± 8.9e 

10 45.3 ± 11.6c 97.5 ± 3.2e 

20 56.9 ± 7.8c,d 99.5 ± 0.3e 

Infogest control 1.3 ± 0.5a 

DPPH 
% of antioxidant activity 

Concentration 
mg/mL 

WPI WPH 

1 22.0 ± 8.6b 20.9 ± 9.8b 

5 30.6 ± 7.2b,c 27.9 ± 9.5b,c 

10 20.8 ± 13.5b,c 51.6 ± 13.4d 

20 40.0 ± 2.3c,d 75.1 ± 8.1e 

Infogest control 3.7 ± 11.2 a 

ORAC 
% of antioxidant activity 

Concentration 
mg/mL 

WPI WPH 

0.01 11.6 ± 4.2a,b,c 8.9 ± 8.2a,b 

0.25 11.8 ± 1.5a,b,c 44.9 ± 9.4b,c 

1 29.2 ± 7.7a,b,c 48.3 ± 14.3c 

10 49.0 ± 13c 48.6 ± 14.3c 

Infogest control 4.7 ± 1.2a 

Different concentrations of WPI and WPH tested for ABTS, DPPH, and ORAC 
assay. Concentrations are shown as percentage of antioxidant activity ± stan-
dard deviation. WPI: whey protein isolate WPH: whey protein hydrolysate. 
Different letters indicate they showed a significant difference between samples 
by the Duncan test (p < 0.05). N = 5. 

Fig. 4. WPH attenuates ROS production in oxidative stimulated Caco-2 
cells. (A) To define concentrations that were not toxic to cells, Caco-2 were 
treated with different concentrations of WPH or H2O2 for 4 h for. Cell viability 
(MTT) was expressed by % of control (B) Cells were pre-treated with different 
concentrations of WPH (1 h) and stimulated with 1 mM H2O2 for 3 h. Stimu-
lation with hydrogen peroxide increased the production of reactive oxygen 
species (ROS) by fluorescence increase of DCF, which was attenuated with 
WPH treatment. 

Fig. 5. WPH prevents GSH reduction and SOD activity in oxidative stim-
ulated Caco-2 cells. Cells were pre-treated with WPH 1 mg/mL (1 h) and 
stimulated with 1 mM H2O2 or not for 3 h. (A) oxidative stimulus reduced GSH 
content, which was prevented by WPH treatment (B) Oxidative stimulus 
increased SOD activity, which was prevented by WPH. (C) Nitric oxide (NO) 
secretion levels were not affected in stimulated Caco-2 cells. Treatments were 
compared by ANOVA followed by the Duncan test. Different lowercase letters 
indicate statistical difference (p < 0.05). WPI: whey protein isolate WPH: whey 
protein hydrolysate. 
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digestive process. Structurally, the sequenced peptides showed pre-
dominantly the amino acids lysine and valine in the N-terminal region 
and tyrosine in the C-terminal region, with recognized antioxidant 
properties. These results reinforce the antioxidant properties of whey 
proteins, with the ability to form peptides that can promote health 
benefits even to the gastrointestinal epithelial cells. 

Enteric endothelial cells are the first to come into contact with 
digested food and may suffer oxidative damage that compromises their 
functionality in inflammatory situations, such as in Crohn’s disease 
(Iborra et al., 2011). Consuming foods with the potential to protect 
against this damage may offer a preventative approach. 
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da Silva: Methodology; Lucilene Delazari dos Santos: Investigation; 
Methodology, Software; Bruno Cesar Rossinib: Investigation; Method-
ology, Software; Bruna Cavecci Mendonçab: Investigation; Methodol-
ogy; Maria Teresa Bertoldo Pacheco: Funding acquisition; Resources; 
Supervision; Writing – review & editing; Fabiana Gallanda: Conceptu-
alization; Data curation; Formal analysis; Funding acquisition; Investi-
gation; Methodology; project administration; Resources; Supervision; 
Validation; Visualization; Roles/Writing, revising & editing. 

CRediT authorship contribution statement 

Juliana Santos de Espindola: Conceptualization, Data curation, 
Formal analysis, Investigation, Methodology, Writing – original draft. 
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