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A B S T R A C T   

This work evaluated the Sb content in polyethylene terephthalate (PET) bottles of mineral water, as well as the 
migration of Sb, according to the conditions established by Brazilian and European Union (EU) legislation. The 
total Sb content in the PET bottles was determined by the mineralization of the packaging followed by quan-
tification by inductively coupled plasma optical emission spectrometry (ICP-OES). The migration of Sb from the 
bottle to the mineral water was carried out after the contact conditions established by Brazilian and EU legis-
lation (40 ◦C for 10 days and 60 ◦C for 10 days, respectively). The migrated Sb content was determined directly 
in the solution, after pre-reduction with L-cysteine, using an ICP-OES coupled with a hydride generator. All 
evaluated packages showed Sb levels ranging from 173 mg kg− 1 to 253 mg kg− 1. The migration of Sb to the 
mineral water after 10 days at 40 ºC in contact with PET bottles was lower than the limit of quantification and 
after contact at 60 ºC for 10 days it was between 1.59 and 4.42 µg L− 1. The highest contact temperature 
established by the EU favored Sb migration. However, all Sb migration results are within the limits established by 
Brazilian and EU legislation.   

1. Introduction 

Brazil is the fourth consumer market for mineral water in the world, 
considering mineral water sold in packages of up to 10 liters (Datamark, 
2017). In 2021, the volume of production sold was 13.2 million liters, an 
increase of 4.7% compared to 2020. Brazilian per capita consumption in 
2021 was 62 liters of mineral water, an increase of 3.9% compared to the 
previous year (ABIR, 2022). The global bottled water market grew by an 
average of 6.4% per year from 2012 to 2017. Several factors can be 
associated with this growth, including population growth, environ-
mental pollution, climate change and the perception of health risks 
(Cardozo et al., 2021). In this market, packaging is extremely important 

for the conservation and distribution of the drink. The material most 
commonly used to produce water bottles is polyethylene terephthalate 
(PET) (Becerra-Herrera et al., 2022). 

Antimony trioxide (Sb2O3) is used as a catalyst in the poly conden-
sation stage for the manufacture of bottle grade PET resin (Carneado 
et al., 2015; Mohammadi and Enayati, 2022; Shotyk and Krachler, 
2007). The PET manufacturing process is not able to recover 100% of the 
catalyst, therefore a residual of antimony (Sb) is retained in the resin and 
can migrate to food products (Magana-Maldonado et al., 2022; Ozaki 
et al., 2022). Germany is the only country that has an established limit 
for Sb in PET packaging, with a maximum limit of 350 mg kg− 1 PET 
(BfR, 2011). Some studies, on the evaluation of the total concentration 
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of Sb in PET bottles from different countries, have already been con-
ducted and showed variation in the reported values (Filella, 2020). For 
example, in Spain the concentration of Sb in PET bottles varied between 
191 and 268 mg kg− 1 (Carneado et al., 2015), in China between 104 and 
166 mg kg− 1 (Fan et al., 2014), in Mexico between 73 and 11 mg kg− 1 

(Chapa-Martínez et al., 2016) and in EU countries 224 mg kg− 1 (Welle 
and Franz, 2011). 

Still in this context, Sb2O3 is on the list of priority pollutants by the 
USEPA (“United States Environmental Protection Agency”) and the EU 
(Hansen and Pergantis, 2006). Constant consumption of water with a 
high level of Sb can increase the level of cholesterol and also decrease 
blood sugar. Sb2O3 is classified as a possible human carcinogen by the 
International Agency for Research on Cancer - IARC (ATSDR, 2017). 
Therefore, in order to ensure that there is the necessary control over any 
substance that can be transferred from the packaging to the packaged 
food, legislation on food contact materials (FCMs) was elaborated and 
established, such as packaging (Coltro et al., 2023; Marangoni Júnior 
et al., 2022). These regulations are based on restricting the use of 
potentially toxic substances in the composition of the material and 
controlling migration. Such restrictions are usually made through pos-
itive lists, with the substances that can be used in the formulation of 
FCMs and in the definition of a total migration limit. When necessary, 
based on data concerning the toxicity of certain substances, specific 
restrictions such as specific migration limit or compositional limit of the 
substance in the packaging material are established (Padula, 2010). 

In Brazil, the Resolution of the Collegiate Board - RDC No. 326/2019 
(Brazil, 2019) published by the National Health Surveillance Agency 
(Anvisa), establishes a positive list of additives for plastic materials 
intended for the preparation of packaging and equipment in contact 
with food. The Resolution authorizes the use of Sb2O3 in the manufac-
ture of PET resin and establishes a specific Sb migration limit of 40 µg 
L− 1, for all foods and beverages, except for mineral water, which has the 
limit defined as 5 µg L− 1 by RDC No. 717/2022 (Brazil, 2022). The same 
limit is established for the EU in Directive 10/2011 (European--
Commission, 2011). 

In order to guarantee the analytical quality in the quantification of Sb 
in mineral water, it is essential to use a technique which has adequate 
accuracy and precision and limits of detection and quantification, below 
the maximum limit allowed for Sb by the different countries. The most 
widely applied techniques for the determination of Sb in water are 
graphite furnace atomic absorption spectrometry (GF-AAS) or with hy-
dride generation (HG-AAS), inductively coupled plasma mass spec-
trometry (ICP-MS), hydride generator atomic fluorescence spectrometry 
(HG-AFS) and flame atomization sequential fast atomic absorption 
spectrometry (FS-FAAS) (Bach et al., 2013; Guerra et al., 2011; Jesus 
et al., 2016; Shotyk and Krachler, 2007; Tukur et al., 2012; Zhang et al., 
2021). 

In addition to these techniques, the use of optical emission spec-
trometry with inductively coupled plasma (ICP-OES) to quantify Sb in 
water, at a concentration below 5 µg L− 1, is a possibility when per-
forming the generation of antimony hydride (Long et al., 2012; Pohl and 
Jamroz, 2011). Hydride generation increases selectivity and sensitivity, 
since almost 100% of the analyte is transported to the plasma and the 
atomization and excitation steps of the elements are more efficient, 
because they spend less energy in the desolvation and vaporization 
processes, because the analyte is in gaseous form. Both pentavalent 
antimony (Sb+5) and trivalent antimony (Sb+3) form hydride, but the 
reaction kinetics of Sb+5 is slower, so all Sb ions need to be in the 
trivalent form to react with the reducing agent. To ensure this condition, 
there is a need to carry out a pre-reduction reaction using a reducing 
agent. For this purpose, L-Cysteine, thiourea or potassium iodide with 
ascorbic acid are the most used (Andrade et al., 2017; Long et al., 2012). 

In addition to the analytical methods used to quantify Sb, sample 
preparation conditions must be followed in accordance with applicable 
legislation. In this sense, to verify the adequacy of the PET packaging in 
relation to the specific migration of Sb, the packaging must be in contact 

with the aqueous simulant (water) for 10 days. The temperature used in 
the tests may vary according to each legislation. In Brazil, RDC No. 51/ 
10 establishes the temperature of 40 ºC (Brazil, 2010) and in Europe, 
Directive 10/2011 establishes the temperature of 60 ºC (European--
Commission, 2011). In this sense, as these legislations present different 
temperature conditions, it is crucial to carry out a study addressing the 
different contact conditions to assess the impact of each one on Sb 
migration. 

Thus, to the best of our knowledge, no investigations have been 
published that used the ICP-OES technique to quantify Sb in mineral 
water, only to quantify Sb in PET bottles, which is the main novelty of 
this research. Added to this, it is the first time that the test conditions 
established by Brazilian and EU legislation are compared in the same 
research for Sb migration. Therefore, this study aimed to quantify the Sb 
content present in PET bottles and in migration tests for mineral water 
sold in Brazil. Therefore, the Sb quantification method in PET bottles 
and mineral water was performed by ICP-OES with a hydride generator. 
In addition, Sb migration from PET bottles to mineral water was eval-
uated using the time and temperature conditions established by Brazil-
ian and EU legislation. 

2. Materials and methods 

2.1. Samples 

Nineteen samples of water packed in PET bottles, made with virgin 
resin, with volumes between 300 and 510 mL were purchased in stores 
in the city of Campinas, São Paulo, Brazil, as described in Table 1. The 
products were chosen considering a limit of 25 days since its production 
date, in order to minimize the influence of the contact time in the spe-
cific migration evaluation tests, from different manufacturers in the 
country. For each sample (brand) of mineral water, 9 units of the same 
batch were purchased. 

2.2. Reagents and instruments 

Hydrochloric acid (HCl) 37% (m/m) and analytical grade sodium 
hydroxide (Merck, Germany), analytical grade sodium borohydride 
(Vetec) and L-cysteine hydrochloride monohydrate P.A (Synth, Brazil) 
were used. The solutions were prepared with deionized water with a 
resistivity of 18.2 MΩ cm− 1, purified in Millipore’s Milli-Q system 
(Bedford, USA). The Sb solutions for the calibration curve in the ICP-OES 
were prepared from dilutions of TraCert stock solutions, containing 
1000 mg L− 1 (Fluka Analytcal, Switzerland). The glassware and flasks 
used were previously decontaminated in a 20% (v/v) HNO3 solution, 

Table 1 
Information about mineral water in PET bottles.  

Sample Manufacturer PET bottle color Volumetric Capacity (mL) 

S1 X green 300 
S2 Y colorless 510 
S3 Z colorless 500 
S4 K colorless 510 
S5 L colorless 510 
S6 M colorless 500 
S7 N colorless 510 
S8 O colorless 510 
S9 P colorless 510 
S10 M colorless 350 
S11 M colorless 500 
S12 Q dark blue 510 
S13 R colorless 510 
S14 Q dark blue 510 
S15 S colorless 500 
S16 T blue 500 
S17 U colorless 500 
S18 V dark blue 510 
S19 W light blue 510  
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leaving them in contact with the acid solution for at least 12 h. After this 
period, they were washed with purified water in a Millipore Elix system. 

All determinations of Sb concentrations were performed using an 
ICP-OES (Optima 2000DV, Perkin Elmer, Shelton, CT, USA). A Mira Mist 
nebulizer with a cyclonic chamber was used to quantify Sb in the bottle, 
and a hydride generator system was coupled to the ICP-OES for Sb 
analysis in mineral waters. The parameters used for the operation of the 
ICP-OES are shown in Table 2. The entire system was controlled by the 
WinLab32™ software (Perkin Elmer, USA). 

2.3. Sb quantification in PET bottle 

The total Sb content in the PET bottle samples was determined ac-
cording to the method proposed and validated by (Kiyataka et al., 2018), 
in which 300 mg of PET sample was mineralized in a high pressure 
digester (HPA) using 3 mL of HNO3 and 0.75 mL of H2SO4, the mixture 
was heated to 280 ◦C and held for 15 min, after this time the mixture was 
heated to 320 ◦C and held for 180 min. The sample was diluted to 25 mL 
with deionized water and Sb quantification was performed on the 
ICP-OES. 

2.4. Migration of Sb from PET bottles to mineral water 

2.4.1. Contact conditions 
For each sample (brand) of mineral water, three units were used to 

quantify the initial Sb content in the water. Three other packages were 
conditioned at 40 ºC for 10 days, equivalent to prolonged contact at 
temperatures of up to 40 ºC for a period longer than 24 h, as established 
by Resolution RDC No. 51/2010 (Brazil, 2010). Other three units were 
stored in a condition which simulates the storage time of over 6 months 
at room temperature, 60 ºC for 10 days, as established by European 
Regulation 10/2011 (European-Commission, 2011). 

2.4.2. Sb pre-reduction for hydride generation and migration evaluation of 
Sb PET bottle to mineral water 

The use of L-Cysteine in the reduction of pentavalent antimony to 
trivalent antimony under acidic conditions is well described in the 
literature (Andrade et al., 2017; Sánchez-Martínez et al., 2013) and was 
used in the mineral water samples of this study. After the contact time 
established in item 2.4.1., 1 mL of concentrated hydrochloric acid and 1 
mL of 18% L-cysteine (w/v) were added to 10 mL of sample. Subse-
quently, the mixture was heated at a temperature greater than 90 ◦C for 
15 min. After the sample cooling, the antimony content was quantified 
directly on the ICP-OES with a hydride generator, using a sodium 
borohydride solution (1%) in an alkaline medium as the reducing agent. 

2.5. Analytical control of parameters for quantification of Sb in mineral 
water 

For the evaluate of the Sb quantification method in mineral water, a 
sample of mineral water was used, packaged in a 510 mL PET container. 
The parameters evaluated were linearity, limits of detection (LOD) and 
quantification (LOQ), accuracy and precision (Inmetro, 2020). 

The linearity of the analytical curve was verified using the Win-
Lab32™ software of the ICP-OES equipment, in the concentration range 
of 1 μg L− 1 to 15 μg L− 1 (7 points: 1.0, 2.5, 5.0, 7.5, 10.0, 12.5 and 15.0 
μg L− 1) and a linear calibration function was fitted to the calibration 
data using the method of least squares, calculated for each analysis 
performed. The coefficients of correlation (r) of all the curves were 
0.999 or greater. 

In order to determine the limit of detection, 7 evaluations of the 
analytical blank were performed, consisting of 10 mL of water, 1 mL of 
concentrated hydrochloric acid and 1 mL of 18% L-cysteine. The 
detection limit was calculated according to Equation described in 
Inmetro (2020). 

The standard establishes that the LOD obtained must be confirmed 
through the analysis of independent samples at the same concentration 
level. Confirmation of the LOD happened using two concentrations close 
to the obtained LOD. In this case, the LOD was verified after reading 7 
repetitions of a sample of ultra-purified water (obtained in a milli-Q 
system) fortified with Sb at concentrations of 0.5 μg L− 1 and 0.6 μg 
L− 1. For all repetitions, the presence of Sb was detected, for the sample 
fortified with 0.5 μg L− 1. For analysts quantification limit at trace level, 
it is recommended to adopt the limit of quantification (LOQ) as the 
lowest concentration of the analytical curve, therefore, the smallest 
point on the analytical curve, 1.0 μg L− 1, was adopted as the quantifi-
cation limit in this study. The accuracy assays of the method for deter-
mining Sb in mineral water was verified by performing recovery tests at 
three concentrations of the Sb standard (2.5, 5.0 and 15.0 μg L− 1) and 
calculated according to Equation described in Inmetro (2020), using the 
concentration of the analyte in the fortified sample, the concentration of 
the analyte in the unfortified sample and the concentration of the ana-
lyte added to the fortified sample. In this case, the recovery was deter-
mined by adding three concentrations of the antimony standard to a 
sample of mineral water with a concentration of 2.89 μg L− 1. The re-
covery evaluation is a function of the concentration and the objective of 
the analysis, and establishes for a concentration of 10 μg kg− 1 an 
acceptance range of 60–115% of variation (Inmetro, 2020). 

The precision of the method for Sb quantification was evaluated 
through repeatability, fortifying with three different concentrations 
(2.5, 5.0 and 15.0 μg L− 1) of water sample obtained by milli-Q, with 
concentration lower than the LOD and a sample of mineral water, with a 
concentration higher than the LOQ. Considering the results, the sample 
standard deviation was calculated and the repeatability was expressed 
as a coefficient of variation. 

3. Results and discussion 

3.1. Determination of Sb in PET bottles 

The results obtained for the Sb concentration in PET bottles are 
presented in Table 3. The maximum Sb content that can migrate to the 
water was also calculated, in case all the Sb present in the PET bottle 
migrated to the beverage. For this, the total Sb content was multiplied by 
the weight of the bottle and divided by the volume of water described on 
the package label. 

The total Sb content present in the analyzed bottles ranged from 173 
mg kg− 1 to 253 mg kg− 1. Therefore, all evaluated samples would meet 
the limit of total Sb in PET of 350 mg kg− 1, established by Germany (BfR, 
2011). Furthermore, these values are similar to others already reported 
in studies published in other countries, as shown in Table 4. In the 
studies, the authors used different analytical techniques, with emphasis 
on the ICP-MS. Finally, considering that 100% of the Sb migrated to the 
water, the maximum expected concentration of Sb in mineral water 
would be 5.1 mg L− 1 to 11.7 mg L− 1, approximately 1000–2300 times 
higher than the established limit of Sb for mineral water, which is 5 µg 
L− 1 defined by RDC No. 717/2022 (Brazil, 2022) and Directive 10/2011 
(European-Commission, 2011). 

Table 2 
Experimental conditions used in the ICP OES equipment.  

Parameter Value/Condition 

Plasma power 1500 W(1) and 1300 W(2) 

Observation height 15 mm(1) (2) 

Torch configuration Axial(1) (2) 

Main argon flow rate 17 L min− 1 (1) and 15 L min− 1 (2) 

Auxiliary argon flow rate 0.2 L min− 1 (1) (2) 

Nebulizing flow rate 0.6 mL min− 1 (1) (2) 

Wavelength Sb: 217.582(1) (2) 

(1) ICP-OES conditions with hydride generator 
(2) ICP-OES conditions with Mira Mist nebulizer 
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3.2. Analytical control of parameters for quantification of Sb in mineral 
water 

The linearity of the standard curve was verified through the corre-
lation coefficient (r) of the curve and showed a correlation greater than 
0.999 in the range of 1.0 μg L− 1 to 15.0 μg L− 1. The limit of detection 
(LOD) was 0.52 μg L− 1 (mean = 0.15, standard deviation = 0.12 and t6 
= 3.143, analysis on 7 samples). The LOD was calculated as the results 
between 0.46 μg L− 1 to 0.61 μg L− 1 and for the sample fortified with 0.6 
μg L− 1, the results were between 0.59 μg L− 1 to 0.75 μg L− 1. Therefore, 
the LOD of the method (0.52 μg L− 1) is possible to detect the presence of 
Sb in the samples. 

For LOQ nine solutions with concentration of 1.0 μg L− 1 were 
analyzed, and the average result obtained was 1.03 μg L− 1, standard 
deviation of 0.06 μg L− 1. Therefore, the method allows to quantify Sb in 

mineral water in concentration allowed by Brazilian legislation. In the 
literature, a LOD and LOQ of 0.003 μg L− 1 and 0.010 μg L− 1, respec-
tively, using ICP-MS, more expensive technique, and a LOD of 0.112 μg 
L− 1 and a LOQ of 0.375 μg L− 1 using HG-AFS to quantify Sb in mineral 
water has been reported (Sánchez-Martínez et al., 2013). 

For recovery the results and the added concentrations are described 
in Table 5. The method presented accuracy, considering that the Sb 
recovery was in the range between 89.4% and 96.1%. For the precision 
of the method, two water samples were fortified. The Sample A Sb 
concentration was below the LOD and for sample B the water concen-
tration was 2.89 μg L− 1. The variation coefficients results obtained are 
also described in Table 5. The acceptance criterion for repeatability, 
considering a concentration of 10 μg kg− 1, represents a maximum CV of 
21% (Inmetro, 2020). Thus, the method presented precision, consid-
ering that the coefficients of variation of the repeatability test were 
below 4.8% for both fortified samples. 

3.3. Migration of Sb from PET bottles to mineral water 

The results obtained for the concentration of Sb in the mineral water 
samples, after zero day of contact (day of purchase), 10 days at 40 ºC 
(Brazil, 2010) and 10 days at 60 ◦C (European-Commission, 2011), are 
presented in Table 6. In all the evaluated samples, the values obtained 
for the Sb concentration in the condition of zero day (day of purchase) 
and in the samples after conditioning for 10 days at 40 ºC, were below 
the quantification limit of 1.0 μg L− 1. On the other hand, in 10 of the 19 
samples submitted to 60 ºC for 10 days (a condition established by the 
European regulation), the Sb migration value was in the range of 
1.59–4.42 μg L− 1, below the maximum limit of 5.0 μg L− 1 established by 
Anvisa legislation and the European (Brazil, 2022; 
European-Commission, 2011). The results obtained were similar to 
those found in the literature, with an average Sb concentration of 3.5 μg 
L− 1 after storage at 60 ºC for 10 days and 0.5 μg L− 1 after 40 ºC for 10 
days (Bach et al., 2013). 

Published studies have shown that temperature is the main factor for 
Sb migration (Al-Otoum et al., 2017; Carneado et al., 2015; Chapa--
Martínez et al., 2016; Fan et al., 2014). The temperature influences the 
diffusion of Sb because with the increase in temperature, the mobility of 
the migrant and the polymer chain increase (Catalá and Gavara, 2002; 
Marangoni et al., 2020; Welle and Franz, 2011). In the literature, it was 
confirmed that the diffusion of Sb in PET increased with higher tem-
perature (Haldimann et al., 2013; Magana-Maldonado et al., 2022; 
Welle and Franz, 2011). 

In respect to the 9 samples that did not present Sb migration above 1 
μg L− 1 after 10 days of contact at 60 ºC, considering that all PET bottles 
analyzed presented Sb content above 170 mg kg− 1, it is believed that 
there is variability among PET bottles regarding the quality of the raw 
material, technology used in the manufacture of bottles, bottle designs 
and the different formulations used by PET manufacturers (Al-Otoum 
et al., 2017; Pinto and Reali, 2009). The degree of crystallinity is also an 
important factor to explain the difference in Sb migration at the same 
temperature, since semicrystalline polymers, such as PET, contain 
amorphous and crystalline morphological regions. In bottles with a 

Table 3 
Total Sb content present in the PET bottle in mg kg− 1 and the maximum possible 
level of Sb migration to the water (1).  

Sample Total Sb content (mg 
kg− 1) (2) 

Maximum possible content of Sb migration 
(mg L− 1) 

S1 253 ± 13 12 
S2 253 ± 14 7.0 
S3 202 ± 8 6.0 
S4 218 ± 6 6.5 
S5 220 ± 21 5.2 
S6 211 ± 2 5.1 
S7 228 ± 28 6.1 
S8 216 ± 42 6.5 
S9 221 ± 11 5.2 
S10 182 ± 8 8.2 
S11 236 ± 3 5.7 
S12 173 ± 1 5.3 
S13 252 ± 1 10 
S14 236 ± 2 6.3 
S15 234 ± 6 7.3 
S16 233 ± 3 7.1 
S17 236 ± 6 14 
S18 236 ± 9 10 
S19 211 ± 7 6.6 

(1) Results of two determinations 
(2) Mean ± standard deviation 

Table 4 
Concentration of Sb determined in PET bottle for mineral water evaluated in 
other countries.  

Country Analytical 
technique 

Sb (mg kg− 1) Reference 

Hungary ICP-MS 210–290 (n =
10) 

(Keresztes et al., 2009) 

Nigeria ICP-MS 178–287 (n =
14) 

(Tukur et al., 2012) 

England ICP-MS 195–241 (n =
18) 

(Tukur et al., 2012) 

China ICP-MS 104–166 (n =
16) 

(Fan et al., 2014) 

Spain HG-AFS 191–268 (n =
3) 

(Carneado et al., 2015) 

Mexico AFS 73–111 (n =
12) 

(Chapa-Martínez et al., 2016) 

Brazil GF-ASS 194–323 (n =
12 

(Jesus et al., 2016) 

Germany ICP-OES 231–257 (n =
27) 

(Alassali et al., 2019) 

Mexico HG-MP-AES 154–279 (n =
4) 

(Magana-Maldonado et al., 
2022) 

ICP- inductively coupled plasma; MS - mass spectrometry; HG - hydride gere-
nation; AFS - atomic fluorescence spectrometry; GF - graphite furnace; ASS - 
atomic absorption spectrometry; OES- optical emission spectrometry; MP - mi-
crowave plasma; AES - atomic emission spectrometry. 

Table 5 
Result of the recovery test and evaluation of the repeatability of the Sb deter-
mination method in mineral water (1).  

Added Sb concentration 
(μg L− 1) 

Recovery 
(%) 

CV of sample A 
(%) (2) 

CV of sample B 
(%) (3) 

2.5 89.4 ± 3.1 3.6 1.5 
5.0 96.1 ± 3.8 4.8 2.4 
15.0 96.1 ± 2.3 3.4 2.0 

(1) Mean of 7 determinations ± standard deviation 
(2) Sample A: Initial concentration lower than LOD. 
(3) Sample B: Initial concentration of 2.89 μg L− 1 
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higher degree of crystallinity, the diffusion of Sb in the polymer will be 
lower, since the crystalline regions are impermeable and act as “knots” 
between the polymer chains, restricting its movement and consequently 
the mobility of the migrant (Catalá and Gavara, 2002). Another factor is 
the degree of orientation of the PET molecules after the bottle 
manufacturing process, because the greater the orientation of the PET 
molecules, the smaller the diffusion of Sb in the polymer (Haldimann 
et al., 2013). Consequently, the crystallinity in combination with the 
orientation of the PET chains in the packaging may explain the differ-
ences in Sb migration results between the analyzed bottles. 

Finally, based on the results obtained, Sb migration was greater 
when the samples were conditioned in the test condition established by 
the European regulation, compared to the milder condition established 
by the Brazilian legislation (Anvisa). Therefore, the test conditions used 
in the migration imply important differences in the results obtained. 
Considering the Brazilian tropical climate, in which in some regions the 
temperature is above 40 ºC, it is recommended to review the condition of 
the specific migration test, proposed by Anvisa. It is suggested that new 
studies be carried out in order to verify which factors are associated with 
PET, such as resin formulation, preform and packaging manufacturing 
parameters, degree of crystallinity, binding of Sb to PET, among others 
and/ or to the composition of mineral water, inhibit or accelerate the 
migration of Sb to water. 

4. Conclusions 

The PET bottles, made with virgin resin, used for packaging mineral 
water, contained relevant concentrations of Sb, with the possibility of 
migration in concentrations above the values allowed by Brazilian and 
European legislation. For the determination of antimony content at trace 
levels, the ICP-OES technique with hydride generation was evalueted 
and proved to be efficient and effective in meeting the migration limit 
required by Brazilian and European legislation for bottled mineral 
water. Sb trioxide, which is used as a catalyst in the manufacture of PET 
resin, can migrate to mineral water. In this work, based on the results 
obtained, using different conditions for the Sb migration tests for min-
eral water, it was verified that the contact condition established by the 
European Regulation (60 ºC for 10 days) presented a superior antimony 
migration in relation to the condition of contact established by Anvisa 
(40 ºC for 10 days). In both contact conditions, all evaluated samples 
showed antimony concentrations below the maximum migration limit 

established by Anvisa and the European regulation. 
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